The deviate,
, associated with the lower tail probability
of the
-distribution with
degrees of freedom is defined as the solution to
The required
is found by using the relationship between a
-distribution and a gamma distribution, i.e., a
-distribution with
degrees of freedom is equal to a gamma distribution with scale parameter
and shape parameter
.
For very large values of
, greater than
, Wilson and Hilferty's normal approximation to the
is used; see
Kendall and Stuart (1969).
Best D J and Roberts D E (1975) Algorithm AS 91. The percentage points of the distribution Appl. Statist. 24 385–388
The results should be accurate to five significant digits for most argument values. Some accuracy is lost for close to .
For higher accuracy the relationship described in
Section 3 may be used and a direct call to
g01ffc made.