# NAG CL Interfacef08vec (dggsvp)

Note: this function is deprecated. Replaced by f08vgc.

Settings help

CL Name Style:

## 1Purpose

f08vec uses orthogonal transformations to simultaneously reduce the $m×n$ matrix $A$ and the $p×n$ matrix $B$ to upper triangular form. This factorization is usually used as a preprocessing step for computing the generalized singular value decomposition (GSVD). f08vec is marked as deprecated by LAPACK; the replacement routine is f08vgc which makes better use of Level 3 BLAS.

## 2Specification

 #include
 void f08vec (Nag_OrderType order, Nag_ComputeUType jobu, Nag_ComputeVType jobv, Nag_ComputeQType jobq, Integer m, Integer p, Integer n, double a[], Integer pda, double b[], Integer pdb, double tola, double tolb, Integer *k, Integer *l, double u[], Integer pdu, double v[], Integer pdv, double q[], Integer pdq, NagError *fail)
The function may be called by the names: f08vec, nag_lapackeig_dggsvp or nag_dggsvp.

## 3Description

f08vec computes orthogonal matrices $U$, $V$ and $Q$ such that
where the $k×k$ matrix ${A}_{12}$ and $l×l$ matrix ${B}_{13}$ are nonsingular upper triangular; ${A}_{23}$ is $l×l$ upper triangular if $m-k-l\ge 0$ and is $\left(m-k\right)×l$ upper trapezoidal otherwise. $\left(k+l\right)$ is the effective numerical rank of the $\left(m+p\right)×n$ matrix ${\left(\begin{array}{cc}{A}^{\mathrm{T}}& {B}^{\mathrm{T}}\end{array}\right)}^{\mathrm{T}}$.
This decomposition is usually used as the preprocessing step for computing the Generalized Singular Value Decomposition (GSVD), see function f08vac.

## 4References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia https://www.netlib.org/lapack/lug
Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

## 5Arguments

1: $\mathbf{order}$Nag_OrderType Input
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by ${\mathbf{order}}=\mathrm{Nag_RowMajor}$. See Section 3.1.3 in the Introduction to the NAG Library CL Interface for a more detailed explanation of the use of this argument.
Constraint: ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ or $\mathrm{Nag_ColMajor}$.
2: $\mathbf{jobu}$Nag_ComputeUType Input
On entry: if ${\mathbf{jobu}}=\mathrm{Nag_AllU}$, the orthogonal matrix $U$ is computed.
If ${\mathbf{jobu}}=\mathrm{Nag_NotU}$, $U$ is not computed.
Constraint: ${\mathbf{jobu}}=\mathrm{Nag_AllU}$ or $\mathrm{Nag_NotU}$.
3: $\mathbf{jobv}$Nag_ComputeVType Input
On entry: if ${\mathbf{jobv}}=\mathrm{Nag_ComputeV}$, the orthogonal matrix $V$ is computed.
If ${\mathbf{jobv}}=\mathrm{Nag_NotV}$, $V$ is not computed.
Constraint: ${\mathbf{jobv}}=\mathrm{Nag_ComputeV}$ or $\mathrm{Nag_NotV}$.
4: $\mathbf{jobq}$Nag_ComputeQType Input
On entry: if ${\mathbf{jobq}}=\mathrm{Nag_ComputeQ}$, the orthogonal matrix $Q$ is computed.
If ${\mathbf{jobq}}=\mathrm{Nag_NotQ}$, $Q$ is not computed.
Constraint: ${\mathbf{jobq}}=\mathrm{Nag_ComputeQ}$ or $\mathrm{Nag_NotQ}$.
5: $\mathbf{m}$Integer Input
On entry: $m$, the number of rows of the matrix $A$.
Constraint: ${\mathbf{m}}\ge 0$.
6: $\mathbf{p}$Integer Input
On entry: $p$, the number of rows of the matrix $B$.
Constraint: ${\mathbf{p}}\ge 0$.
7: $\mathbf{n}$Integer Input
On entry: $n$, the number of columns of the matrices $A$ and $B$.
Constraint: ${\mathbf{n}}\ge 0$.
8: $\mathbf{a}\left[\mathit{dim}\right]$double Input/Output
Note: the dimension, dim, of the array a must be at least
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pda}}×{\mathbf{n}}\right)$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}×{\mathbf{pda}}\right)$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
The $\left(i,j\right)$th element of the matrix $A$ is stored in
• ${\mathbf{a}}\left[\left(j-1\right)×{\mathbf{pda}}+i-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• ${\mathbf{a}}\left[\left(i-1\right)×{\mathbf{pda}}+j-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
On entry: the $m×n$ matrix $A$.
On exit: contains the triangular (or trapezoidal) matrix described in Section 3.
9: $\mathbf{pda}$Integer Input
On entry: the stride separating row or column elements (depending on the value of order) in the array a.
Constraints:
• if ${\mathbf{order}}=\mathrm{Nag_ColMajor}$, ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}\right)$;
• if ${\mathbf{order}}=\mathrm{Nag_RowMajor}$, ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
10: $\mathbf{b}\left[\mathit{dim}\right]$double Input/Output
Note: the dimension, dim, of the array b must be at least
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pdb}}×{\mathbf{n}}\right)$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{p}}×{\mathbf{pdb}}\right)$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
The $\left(i,j\right)$th element of the matrix $B$ is stored in
• ${\mathbf{b}}\left[\left(j-1\right)×{\mathbf{pdb}}+i-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• ${\mathbf{b}}\left[\left(i-1\right)×{\mathbf{pdb}}+j-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
On entry: the $p×n$ matrix $B$.
On exit: contains the triangular matrix described in Section 3.
11: $\mathbf{pdb}$Integer Input
On entry: the stride separating row or column elements (depending on the value of order) in the array b.
Constraints:
• if ${\mathbf{order}}=\mathrm{Nag_ColMajor}$, ${\mathbf{pdb}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{p}}\right)$;
• if ${\mathbf{order}}=\mathrm{Nag_RowMajor}$, ${\mathbf{pdb}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
12: $\mathbf{tola}$double Input
13: $\mathbf{tolb}$double Input
On entry: tola and tolb are the thresholds to determine the effective numerical rank of matrix $B$ and a subblock of $A$. Generally, they are set to
 $tola=max(m,n)‖A‖ε, tolb=max(p,n)‖B‖ε,$
where $\epsilon$ is the machine precision.
The size of tola and tolb may affect the size of backward errors of the decomposition.
14: $\mathbf{k}$Integer * Output
15: $\mathbf{l}$Integer * Output
On exit: k and l specify the dimension of the subblocks $k$ and $l$ as described in Section 3; $\left(k+l\right)$ is the effective numerical rank of ${\left(\begin{array}{cc}{{\mathbf{a}}}^{\mathrm{T}}& {{\mathbf{b}}}^{\mathrm{T}}\end{array}\right)}^{\mathrm{T}}$.
16: $\mathbf{u}\left[\mathit{dim}\right]$double Output
Note: the dimension, dim, of the array u must be at least
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pdu}}×{\mathbf{m}}\right)$ when ${\mathbf{jobu}}=\mathrm{Nag_AllU}$;
• $1$ otherwise.
The $\left(i,j\right)$th element of the matrix $U$ is stored in
• ${\mathbf{u}}\left[\left(j-1\right)×{\mathbf{pdu}}+i-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• ${\mathbf{u}}\left[\left(i-1\right)×{\mathbf{pdu}}+j-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
On exit: if ${\mathbf{jobu}}=\mathrm{Nag_AllU}$, u contains the orthogonal matrix $U$.
If ${\mathbf{jobu}}=\mathrm{Nag_NotU}$, u is not referenced.
17: $\mathbf{pdu}$Integer Input
On entry: the stride separating row or column elements (depending on the value of order) in the array u.
Constraints:
• if ${\mathbf{jobu}}=\mathrm{Nag_AllU}$, ${\mathbf{pdu}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}\right)$;
• otherwise ${\mathbf{pdu}}\ge 1$.
18: $\mathbf{v}\left[\mathit{dim}\right]$double Output
Note: the dimension, dim, of the array v must be at least
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pdv}}×{\mathbf{p}}\right)$ when ${\mathbf{jobv}}=\mathrm{Nag_ComputeV}$;
• $1$ otherwise.
The $\left(i,j\right)$th element of the matrix $V$ is stored in
• ${\mathbf{v}}\left[\left(j-1\right)×{\mathbf{pdv}}+i-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• ${\mathbf{v}}\left[\left(i-1\right)×{\mathbf{pdv}}+j-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
On exit: if ${\mathbf{jobv}}=\mathrm{Nag_ComputeV}$, v contains the orthogonal matrix $V$.
If ${\mathbf{jobv}}=\mathrm{Nag_NotV}$, v is not referenced.
19: $\mathbf{pdv}$Integer Input
On entry: the stride separating row or column elements (depending on the value of order) in the array v.
Constraints:
• if ${\mathbf{jobv}}=\mathrm{Nag_ComputeV}$, ${\mathbf{pdv}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{p}}\right)$;
• otherwise ${\mathbf{pdv}}\ge 1$.
20: $\mathbf{q}\left[\mathit{dim}\right]$double Output
Note: the dimension, dim, of the array q must be at least
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pdq}}×{\mathbf{n}}\right)$ when ${\mathbf{jobq}}=\mathrm{Nag_ComputeQ}$;
• $1$ otherwise.
The $\left(i,j\right)$th element of the matrix $Q$ is stored in
• ${\mathbf{q}}\left[\left(j-1\right)×{\mathbf{pdq}}+i-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• ${\mathbf{q}}\left[\left(i-1\right)×{\mathbf{pdq}}+j-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
On exit: if ${\mathbf{jobq}}=\mathrm{Nag_ComputeQ}$, q contains the orthogonal matrix $Q$.
If ${\mathbf{jobq}}=\mathrm{Nag_NotQ}$, q is not referenced.
21: $\mathbf{pdq}$Integer Input
On entry: the stride separating row or column elements (depending on the value of order) in the array q.
Constraints:
• if ${\mathbf{jobq}}=\mathrm{Nag_ComputeQ}$, ${\mathbf{pdq}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$;
• otherwise ${\mathbf{pdq}}\ge 1$.
22: $\mathbf{fail}$NagError * Input/Output
The NAG error argument (see Section 7 in the Introduction to the NAG Library CL Interface).

## 6Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.1.2 in the Introduction to the NAG Library CL Interface for further information.
On entry, argument $⟨\mathit{\text{value}}⟩$ had an illegal value.
NE_ENUM_INT_2
On entry, ${\mathbf{jobq}}=⟨\mathit{\text{value}}⟩$, ${\mathbf{pdq}}=⟨\mathit{\text{value}}⟩$ and ${\mathbf{n}}=⟨\mathit{\text{value}}⟩$.
Constraint: if ${\mathbf{jobq}}=\mathrm{Nag_ComputeQ}$, ${\mathbf{pdq}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$;
otherwise ${\mathbf{pdq}}\ge 1$.
On entry, ${\mathbf{jobu}}=⟨\mathit{\text{value}}⟩$, ${\mathbf{pdu}}=⟨\mathit{\text{value}}⟩$ and ${\mathbf{m}}=⟨\mathit{\text{value}}⟩$.
Constraint: if ${\mathbf{jobu}}=\mathrm{Nag_AllU}$, ${\mathbf{pdu}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}\right)$;
otherwise ${\mathbf{pdu}}\ge 1$.
On entry, ${\mathbf{jobv}}=⟨\mathit{\text{value}}⟩$, ${\mathbf{pdv}}=⟨\mathit{\text{value}}⟩$ and ${\mathbf{p}}=⟨\mathit{\text{value}}⟩$.
Constraint: if ${\mathbf{jobv}}=\mathrm{Nag_ComputeV}$, ${\mathbf{pdv}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{p}}\right)$;
otherwise ${\mathbf{pdv}}\ge 1$.
NE_INT
On entry, ${\mathbf{m}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{m}}\ge 0$.
On entry, ${\mathbf{n}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{n}}\ge 0$.
On entry, ${\mathbf{p}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{p}}\ge 0$.
On entry, ${\mathbf{pda}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pda}}>0$.
On entry, ${\mathbf{pdb}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pdb}}>0$.
On entry, ${\mathbf{pdq}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pdq}}>0$.
On entry, ${\mathbf{pdu}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pdu}}>0$.
On entry, ${\mathbf{pdv}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pdv}}>0$.
NE_INT_2
On entry, ${\mathbf{pda}}=⟨\mathit{\text{value}}⟩$ and ${\mathbf{m}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}\right)$.
On entry, ${\mathbf{pda}}=⟨\mathit{\text{value}}⟩$ and ${\mathbf{n}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
On entry, ${\mathbf{pdb}}=⟨\mathit{\text{value}}⟩$ and ${\mathbf{n}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pdb}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
On entry, ${\mathbf{pdb}}=⟨\mathit{\text{value}}⟩$ and ${\mathbf{p}}=⟨\mathit{\text{value}}⟩$.
Constraint: ${\mathbf{pdb}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{p}}\right)$.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
See Section 7.5 in the Introduction to the NAG Library CL Interface for further information.
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 8 in the Introduction to the NAG Library CL Interface for further information.

## 7Accuracy

The computed factorization is nearly the exact factorization for nearby matrices $\left(A+E\right)$ and $\left(B+F\right)$, where
 $‖E‖2 = O(ε)‖A‖2 and ‖F‖2= O(ε)‖B‖2,$
and $\epsilon$ is the machine precision.

## 8Parallelism and Performance

f08vec makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

The complex analogue of this function is f08vsc.

## 10Example

This example finds the generalized factorization
 $A = UΣ1 ( 0 S ) QT , B= VΣ2 ( 0 T ) QT ,$
of the matrix pair $\left(\begin{array}{cc}A& B\end{array}\right)$, where
 $A = ( 123 321 456 788 ) and B= ( −2−33 465 ) .$

### 10.1Program Text

Program Text (f08vece.c)

### 10.2Program Data

Program Data (f08vece.d)

### 10.3Program Results

Program Results (f08vece.r)