e05uc
is the AD Library version of the primal routine
e05ucf.
Based (in the C++ interface) on overload resolution,
e05uc can be used for primal, tangent and adjoint
evaluation. It supports tangents and adjoints of first order.
Corresponding to the overloaded C++ function, the Fortran interface provides five routines with names reflecting the type used for active real arguments. The actual subroutine and type names are formed by replacing AD and ADTYPE in the above as follows:
The function is overloaded on ADTYPE which represents the type of active arguments. ADTYPE may be any of the following types: double, dco::ga1s<double>::type, dco::gt1s<double>::type
Note: this function can be used with AD tools other than dco/c++. For details, please contact NAG.
3Description
e05uc
is the AD Library version of the primal routine
e05ucf.
e05ucf is designed to find the global minimum of an arbitrary smooth function subject to constraints (which may include simple bounds on the variables, linear constraints and smooth nonlinear constraints) by generating a number of different starting points and performing a local search from each using sequential quadratic programming.
For further information see Section 3 in the documentation for e05ucf.
4References
Dennis J E Jr and Moré J J (1977) Quasi-Newton methods, motivation and theory SIAM Rev.19 46–89
Dennis J E Jr and Schnabel R B (1981) A new derivation of symmetric positive-definite secant updates nonlinear programming (eds O L Mangasarian, R R Meyer and S M Robinson) 4 167–199 Academic Press
Dennis J E Jr and Schnabel R B (1983) Numerical Methods for Unconstrained Optimization and Nonlinear Equations Prentice–Hall
Fletcher R (1987) Practical Methods of Optimization (2nd Edition) Wiley
Gill P E, Hammarling S, Murray W, Saunders M A and Wright M H (1986) Users' guide for LSSOL (Version 1.0) Report SOL 86-1 Department of Operations Research, Stanford University
Gill P E, Murray W, Saunders M A and Wright M H (1984) Users' guide for SOL/QPSOL version 3.2 Report SOL 84–5 Department of Operations Research, Stanford University
Gill P E, Murray W, Saunders M A and Wright M H (1986a) Some theoretical properties of an augmented Lagrangian merit function Report SOL 86–6R Department of Operations Research, Stanford University
Gill P E, Murray W, Saunders M A and Wright M H (1986b) Users' guide for NPSOL (Version 4.0): a Fortran package for nonlinear programming Report SOL 86-2 Department of Operations Research, Stanford University
Gill P E, Murray W and Wright M H (1981) Practical Optimization Academic Press
Powell M J D (1974) Introduction to constrained optimization Numerical Methods for Constrained Optimization (eds P E Gill and W Murray) 1–28 Academic Press
Powell M J D (1983) Variable metric methods in constrained optimization Mathematical Programming: the State of the Art (eds A Bachem, M Grötschel and B Korte) 288–311 Springer–Verlag
5Arguments
In addition to the arguments present in the interface of the primal routine,
e05uc includes some arguments specific to AD.
A brief summary of the AD specific arguments is given below. For the remainder, links are provided to the corresponding argument from the primal routine.
A tooltip popup for all arguments can be found by hovering over the argument name in Section 2 and in this section.
If a null pointer is used as the argument, then a NAG supplied routine will be used as the argument for this parameter (C++ only). For the Fortran interface, the NAG supplied routine e04ud_AD_m may be used as the actual argument for this parameter.
If a null pointer is used as the argument, then a NAG supplied routine will be used as the argument for this parameter (C++ only). For the Fortran interface, the NAG supplied routine e05uc_AD_z may be used as the actual argument for this parameter.