NAG AD Library
e04dg (uncon_conjgrd_comp)

Settings help

AD Name Style:


AD Specification Language:

1 Purpose

e04dg is the AD Library version of the primal routine e04dgf. Based (in the C++ interface) on overload resolution, e04dg can be used for primal, tangent and adjoint evaluation. It supports tangents and adjoints of first order.

2 Specification

Fortran Interface
Subroutine e04dg_AD_f ( ad_handle, n, objfun, iter, objf, objgrd, x, iwork, work, iuser, ruser, lwsav, iwsav, rwsav, ifail)
Integer, Intent (In) :: n
Integer, Intent (Inout) :: iuser(*), iwsav(610), ifail
Integer, Intent (Out) :: iter, iwork(n+1)
ADTYPE, Intent (Inout) :: x(n), ruser(*), rwsav(475)
ADTYPE, Intent (Out) :: objf, objgrd(n), work(13*n)
Logical, Intent (Inout) :: lwsav(120)
Type (c_ptr), Intent (Inout) :: ad_handle
External :: objfun
Corresponding to the overloaded C++ function, the Fortran interface provides five routines with names reflecting the type used for active real arguments. The actual subroutine and type names are formed by replacing AD and ADTYPE in the above as follows:
when ADTYPE is Real(kind=nag_wp) then AD is p0w
when ADTYPE is Type(nagad_a1w_w_rtype) then AD is a1w
when ADTYPE is Type(nagad_t1w_w_rtype) then AD is t1w
C++ Header Interface
#include <dco.hpp>
#include <nagad.h>
namespace nag {
namespace ad {
void e04dg ( void *&ad_handle, const Integer &n,
void (NAG_CALL objfun)(void *&ad_handle, Integer &mode, const Integer &n, const ADTYPE x[], ADTYPE &objf, ADTYPE objgrd[], const Integer &nstate, Integer iuser[], ADTYPE ruser[]),
Integer &iter, ADTYPE &objf, ADTYPE objgrd[], ADTYPE x[], Integer iwork[], ADTYPE work[], const Integer &liuser, Integer iuser[], const Integer &lruser, ADTYPE ruser[], logical lwsav[], Integer iwsav[], ADTYPE rwsav[], Integer &ifail)
}
}
The function is overloaded on ADTYPE which represents the type of active arguments. ADTYPE may be any of the following types:
double,
dco::ga1s<double>::type,
dco::gt1s<double>::type
Note: this function can be used with AD tools other than dco/c++. For details, please contact NAG.

3 Description

e04dg is the AD Library version of the primal routine e04dgf.
e04dgf minimizes an unconstrained nonlinear function of several variables using a pre-conditioned, limited memory quasi-Newton conjugate gradient method. First derivatives (or an ‘acceptable’ finite difference approximation to them) are required. It is intended for use on large scale problems. For further information see Section 3 in the documentation for e04dgf.

4 References

Gill P E and Murray W (1979) Conjugate-gradient methods for large-scale nonlinear optimization Technical Report SOL 79-15 Department of Operations Research, Stanford University
Gill P E, Murray W and Wright M H (1981) Practical Optimization Academic Press

5 Arguments

In addition to the arguments present in the interface of the primal routine, e04dg includes some arguments specific to AD.
A brief summary of the AD specific arguments is given below. For the remainder, links are provided to the corresponding argument from the primal routine. A tooltip popup for all arguments can be found by hovering over the argument name in Section 2 and in this section.
1: ad_handle – Pointer to AD Data Input/Output
On entry: a handle to the AD configuration data object, as created by x10aa.
2: n – Integer Input
3: objfun – Subroutine External Procedure
The specification of objfun is:
Fortran Interface
Subroutine objfun ( ad_handle, mode, n, x, objf, objgrd, nstate, iuser, ruser)
Integer, Intent (In) :: n, nstate
Integer, Intent (Inout) :: mode, iuser(*)
ADTYPE, Intent (In) :: x(n)
ADTYPE, Intent (Inout) :: ruser(*)
ADTYPE, Intent (Out) :: objf, objgrd(n)
Type (c_ptr), Intent (Inout) :: ad_handle
C++ Header Interface
void objfun ( void *&ad_handle, Integer &mode, const Integer &n, const ADTYPE x[], ADTYPE &objf, ADTYPE objgrd[], const Integer &nstate, Integer iuser[], ADTYPE ruser[])
1: ad_handle – Pointer to AD Data Input/Output
On entry: a handle to the AD configuration data object.
2: mode – Integer Input/Output
3: n – Integer Input
4: xADTYPE array Input
5: objfADTYPE Output
6: objgrdADTYPE array Output
7: nstate – Integer Input
8: iuser – Integer array User Workspace
9: ruserADTYPE array User Workspace
4: iter – Integer Output
5: objfADTYPE Output
6: objgrd(n) – ADTYPE array Output
7: x(n) – ADTYPE array Input/Output
8: iwork(n+1) – Integer array Workspace
9: work(13×n) – ADTYPE array Workspace
10: liuser Input
User workspace dimension (C++ only), see x10af to specify the dimension from Fortran.
11: iuser(*) – Integer array User Workspace
12: lruser Input
User workspace dimension (C++ only), see x10ae to specify the dimension from Fortran.
13: ruser(*) – ADTYPE array User Workspace
14: lwsav(120) – logical array Communication Array
The arrays lwsav, iwsav and rwsav must not be altered between calls to any of the routines routine, routine, routine or routine.
15: iwsav(610) – Integer array Communication Array
The arrays lwsav, iwsav and rwsav must not be altered between calls to any of the routines routine, routine, routine or routine.
16: rwsav(475) – ADTYPE array Communication Array
The arrays lwsav, iwsav and rwsav must not be altered between calls to any of the routines routine, routine, routine or routine.
17: ifail – Integer Input/Output

6 Error Indicators and Warnings

e04dg preserves all error codes from e04dgf and in addition can return:
ifail=-89
An unexpected AD error has been triggered by this routine. Please contact NAG.
See Section 4.8.2 in the NAG AD Library Introduction for further information.
ifail=-199
The routine was called using a mode that has not yet been implemented.
ifail=-443
On entry: ad_handle is nullptr.
This check is only made if the overloaded C++ interface is used with arguments not of type double.
ifail=-444
A C++ exception was thrown.
The error message will show the details of the C++ exception text.
ifail=-899
Dynamic memory allocation failed for AD.
See Section 4.8.1 in the NAG AD Library Introduction for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

e04dg is not threaded in any implementation.

9 Further Comments

None.

10 Example

The following examples are variants of the example for e04dgf, modified to demonstrate calling the NAG AD Library.
Description of the primal example.
This example finds a minimum of the function
F=ex1(4x12+2x22+4x1x2+2x2+1).  
The initial point is
x0 = (-1.0,1.0) T ,  
and F(x0)=1.8394 (to five figures).
The optimal solution is
x* = (0.5,-1.0) T ,  
and F(x*)=0.
The document for e04dj includes an example program to solve the same problem using some of the optional parameters described in Section 12.

10.1 Adjoint modes

Language Source File Data Results
Fortran e04dg_a1w_fe.f90 e04dg_a1w_fe.d e04dg_a1w_fe.r
C++ e04dg_a1w_hcppe.cpp e04dg_a1w_hcppe.d e04dg_a1w_hcppe.r

10.2 Tangent modes

Language Source File Data Results
Fortran e04dg_t1w_fe.f90 e04dg_t1w_fe.d e04dg_t1w_fe.r
C++ e04dg_t1w_hcppe.cpp e04dg_t1w_hcppe.d e04dg_t1w_hcppe.r

10.3 Passive mode

Language Source File Data Results
Fortran e04dg_p0w_fe.f90 e04dg_p0w_fe.d e04dg_p0w_fe.r
C++ e04dg_p0w_hcppe.cpp e04dg_p0w_hcppe.d e04dg_p0w_hcppe.r