NAG AD Library
d01rm (dim1_inf_general)

Settings help

AD Name Style:


AD Specification Language:

1 Purpose

d01rm is the AD Library version of the primal routine d01rmf. Based (in the C++ interface) on overload resolution, d01rm can be used for primal, tangent and adjoint evaluation. It supports tangents and adjoints of first order.

2 Specification

Fortran Interface
Subroutine d01rm_AD_f ( ad_handle, f, bound, inf, epsabs, epsrel, maxsub, result, abserr, rinfo, iinfo, iuser, ruser, cpuser, ifail)
Integer, Intent (In) :: inf, maxsub
Integer, Intent (Inout) :: iuser(*), ifail
Integer, Intent (Out) :: iinfo(max(maxsub,4))
ADTYPE, Intent (In) :: bound, epsabs, epsrel
ADTYPE, Intent (Inout) :: ruser(*)
ADTYPE, Intent (Out) :: result, abserr, rinfo(4*maxsub)
Type (c_ptr), Intent (Inout) :: ad_handle
Type (c_ptr), Intent (In) :: cpuser
External :: f
Corresponding to the overloaded C++ function, the Fortran interface provides five routines with names reflecting the type used for active real arguments. The actual subroutine and type names are formed by replacing AD and ADTYPE in the above as follows:
when ADTYPE is Real(kind=nag_wp) then AD is p0w
when ADTYPE is Type(nagad_a1w_w_rtype) then AD is a1w
when ADTYPE is Type(nagad_t1w_w_rtype) then AD is t1w
C++ Header Interface
#include <dco.hpp>
#include <nagad.h>
namespace nag {
namespace ad {
void d01rm ( void *&ad_handle,
void (NAG_CALL f)(void *&ad_handle, const ADTYPE x[], const Integer &nx, ADTYPE fv[], Integer &iflag, Integer iuser[], ADTYPE ruser[], void *cpuser),
const ADTYPE &bound, const Integer &inf, const ADTYPE &epsabs, const ADTYPE &epsrel, const Integer &maxsub, ADTYPE &result, ADTYPE &abserr, ADTYPE rinfo[], Integer iinfo[], const Integer &liuser, Integer iuser[], const Integer &lruser, ADTYPE ruser[], void *cpuser, Integer &ifail)
}
}
The function is overloaded on ADTYPE which represents the type of active arguments. ADTYPE may be any of the following types:
double,
dco::ga1s<double>::type,
dco::gt1s<double>::type
Note: this function can be used with AD tools other than dco/c++. For details, please contact NAG.

3 Description

d01rm is the AD Library version of the primal routine d01rmf.
d01rmf calculates an approximation to the integral of a function f(x) over an infinite or semi-infinite interval [a,b]:
I= ab f(x) dx .  
For further information see Section 3 in the documentation for d01rmf.

4 References

de Doncker E (1978) An adaptive extrapolation algorithm for automatic integration ACM SIGNUM Newsl. 13(2) 12–18
Malcolm M A and Simpson R B (1976) Local versus global strategies for adaptive quadrature ACM Trans. Math. Software 1 129–146
Piessens R, de Doncker–Kapenga E, Überhuber C and Kahaner D (1983) QUADPACK, A Subroutine Package for Automatic Integration Springer–Verlag
Wynn P (1956) On a device for computing the em(Sn) transformation Math. Tables Aids Comput. 10 91–96

5 Arguments

In addition to the arguments present in the interface of the primal routine, d01rm includes some arguments specific to AD.
A brief summary of the AD specific arguments is given below. For the remainder, links are provided to the corresponding argument from the primal routine. A tooltip popup for all arguments can be found by hovering over the argument name in Section 2 and in this section.
1: ad_handle – Pointer to AD Data Input/Output
On entry: a handle to the AD configuration data object, as created by x10aa.
2: f – Subroutine External Procedure
The specification of f is:
Fortran Interface
Subroutine f ( ad_handle, x, nx, fv, iflag, iuser, ruser, cpuser)
Integer, Intent (In) :: nx
Integer, Intent (Inout) :: iflag, iuser(*)
ADTYPE, Intent (In) :: x(nx)
ADTYPE, Intent (Inout) :: ruser(*)
ADTYPE, Intent (Out) :: fv(nx)
Type (c_ptr), Intent (Inout) :: ad_handle
Type (c_ptr), Intent (In) :: cpuser
C++ Header Interface
void f ( void *&ad_handle, const ADTYPE x[], const Integer &nx, ADTYPE fv[], Integer &iflag, Integer iuser[], ADTYPE ruser[], void *cpuser)
1: ad_handle – Pointer to AD Data Input/Output
On entry: a handle to the AD configuration data object.
2: xADTYPE array Input
3: nx – Integer Input
4: fvADTYPE array Output
5: iflag – Integer Input/Output
6: iuser – Integer array User Workspace
7: ruserADTYPE array User Workspace
8: cpuser – Type(c_ptr) User Workspace
3: boundADTYPE Input
4: inf – Integer Input
5: epsabsADTYPE Input
6: epsrelADTYPE Input
7: maxsub – Integer Input
8: resultADTYPE Output
9: abserrADTYPE Output
10: rinfo(4×maxsub) – ADTYPE array Output
11: iinfo(max(maxsub,4)) – Integer array Output
12: liuser Input
User workspace dimension (C++ only), see x10af to specify the dimension from Fortran.
13: iuser(*) – Integer array User Workspace
14: lruser Input
User workspace dimension (C++ only), see x10ae to specify the dimension from Fortran.
15: ruser(*) – ADTYPE array User Workspace
16: cpuser – Type(c_ptr) User Workspace
17: ifail – Integer Input/Output

6 Error Indicators and Warnings

d01rm preserves all error codes from d01rmf and in addition can return:
ifail=-89
An unexpected AD error has been triggered by this routine. Please contact NAG.
See Section 4.8.2 in the NAG AD Library Introduction for further information.
ifail=-199
The routine was called using a mode that has not yet been implemented.
ifail=-443
On entry: ad_handle is nullptr.
This check is only made if the overloaded C++ interface is used with arguments not of type double.
ifail=-444
A C++ exception was thrown.
The error message will show the details of the C++ exception text.
ifail=-899
Dynamic memory allocation failed for AD.
See Section 4.8.1 in the NAG AD Library Introduction for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

d01rm is not threaded in any implementation.

9 Further Comments

None.

10 Example

The following examples are variants of the example for d01rmf, modified to demonstrate calling the NAG AD Library.
Description of the primal example.
This example computes
0 1 (x+1) x dx .  
The exact answer is π.

10.1 Adjoint modes

Language Source File Data Results
Fortran d01rm_a1w_fe.f90 None d01rm_a1w_fe.r
C++ d01rm_a1w_hcppe.cpp None d01rm_a1w_hcppe.r

10.2 Tangent modes

Language Source File Data Results
Fortran d01rm_t1w_fe.f90 None d01rm_t1w_fe.r
C++ d01rm_t1w_hcppe.cpp None d01rm_t1w_hcppe.r

10.3 Passive mode

Language Source File Data Results
Fortran d01rm_p0w_fe.f90 None d01rm_p0w_fe.r
C++ d01rm_p0w_hcppe.cpp None d01rm_p0w_hcppe.r