This manual relates to an old release of the Library.
The documentation for the current release is also available on this site.

NAG CL Interface
f16sac (zgemv)

Settings help

CL Name Style:


1 Purpose

f16sac performs matrix-vector multiplication for a complex general matrix.

2 Specification

#include <nag.h>
void  f16sac (Nag_OrderType order, Nag_TransType trans, Integer m, Integer n, Complex alpha, const Complex a[], Integer pda, const Complex x[], Integer incx, Complex beta, Complex y[], Integer incy, NagError *fail)
The function may be called by the names: f16sac, nag_blast_zgemv or nag_zgemv.

3 Description

f16sac performs one of the matrix-vector operations
yαAx+βy,  yαATx+βy  or  yαAHx+βy  
where A is an m×n complex matrix, x and y are complex vectors, and α and β are complex scalars.
If m=0 or n=0, no operation is performed.

4 References

Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001) Basic Linear Algebra Subprograms Technical (BLAST) Forum Standard University of Tennessee, Knoxville, Tennessee https://www.netlib.org/blas/blast-forum/blas-report.pdf

5 Arguments

1: order Nag_OrderType Input
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by order=Nag_RowMajor. See Section 3.1.3 in the Introduction to the NAG Library CL Interface for a more detailed explanation of the use of this argument.
Constraint: order=Nag_RowMajor or Nag_ColMajor.
2: trans Nag_TransType Input
On entry: specifies the operation to be performed.
trans=Nag_NoTrans
yαAx+βy.
trans=Nag_Trans
yαATx+βy.
trans=Nag_ConjTrans
yαAHx+βy.
Constraint: trans=Nag_NoTrans, Nag_Trans or Nag_ConjTrans.
3: m Integer Input
On entry: m, the number of rows of the matrix A.
Constraint: m0.
4: n Integer Input
On entry: n, the number of columns of the matrix A.
Constraint: n0.
5: alpha Complex Input
On entry: the scalar α.
6: a[dim] const Complex Input
Note: the dimension, dim, of the array a must be at least
  • max(1,pda×n) when order=Nag_ColMajor;
  • max(1,m×pda) when order=Nag_RowMajor.
If order=Nag_ColMajor, Aij is stored in a[(j-1)×pda+i-1].
If order=Nag_RowMajor, Aij is stored in a[(i-1)×pda+j-1].
On entry: the m×n matrix A.
7: pda Integer Input
On entry: the stride separating row or column elements (depending on the value of order) in the array a.
Constraints:
  • if order=Nag_ColMajor, pdamax(1,m);
  • if order=Nag_RowMajor, pdan.
8: x[dim] const Complex Input
Note: the dimension, dim, of the array x must be at least
  • max(1,1+(n-1)|incx|) when trans=Nag_NoTrans;
  • max(1,1+(m-1)|incx|) when trans=Nag_Trans or Nag_ConjTrans.
On entry: the vector x.
If trans=Nag_NoTrans, then x is an n-element vector.
  • If incx>0, xi must be stored in x[(i-1)×incx], for i=1,2,,n.
  • If incx<0, xi must be stored in x[(n-i)×|incx|], for i=1,2,,n.
  • Intermediate elements of x are not referenced. If n=0, x is not referenced and may be NULL.
Otherwise, x is an m-element vector.
  • If incx>0, xi must be stored in x[(i-1)×incx], for i=1,2,,m.
  • If incx<0, xi must be stored in x[(m-i)×|incx|], for i=1,2,,m.
  • Intermediate elements of x are not referenced. If m=0, x is not referenced and may be NULL.
9: incx Integer Input
On entry: the increment in the subscripts of x between successive elements of x.
Constraint: incx0.
10: beta Complex Input
On entry: the scalar β.
11: y[dim] Complex Input/Output
Note: the dimension, dim, of the array y must be at least
  • max(1,1+(m-1)|incy|) when trans=Nag_NoTrans;
  • max(1,1+(n-1)|incy|) when trans=Nag_Trans or Nag_ConjTrans.
On entry: the vector y. See x for details of storage.
If beta=0, y need not be set.
On exit: the updated vector y.
12: incy Integer Input
On entry: the increment in the subscripts of y between successive elements of y.
Constraint: incy0.
13: fail NagError * Input/Output
The NAG error argument (see Section 7 in the Introduction to the NAG Library CL Interface).

6 Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.1.2 in the Introduction to the NAG Library CL Interface for further information.
NE_BAD_PARAM
On entry, argument value had an illegal value.
NE_INT
On entry, incx=value.
Constraint: incx0.
On entry, incy=value.
Constraint: incy0.
On entry, m=value.
Constraint: m0.
On entry, n=value.
Constraint: n0.
NE_INT_2
On entry, pda=value, m=value.
Constraint: pdamax(1,m).
On entry, pda=value and n=value.
Constraint: pdan.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 8 in the Introduction to the NAG Library CL Interface for further information.

7 Accuracy

The BLAS standard requires accurate implementations which avoid unnecessary over/underflow (see Section 2.7 of Basic Linear Algebra Subprograms Technical (BLAST) Forum (2001)).

8 Parallelism and Performance

f16sac is not threaded in any implementation.

9 Further Comments

None.

10 Example

This example computes the matrix-vector product
y=αAx+βy  
where
A = ( 1.0+1.0i 1.0+2.0i 2.0+1.0i 2.0+2.0i 3.0+1.0i 3.0+2.0i ) ,  
x = ( 1.0-1.0i 2.0-2.0i ) ,  
y = ( -3.5-0.5i -4.5+1.5i -5.5+3.5i ) ,  
α=1.0+0.0i   and   β=2.0+0.0i .  

10.1 Program Text

Program Text (f16sace.c)

10.2 Program Data

Program Data (f16sace.d)

10.3 Program Results

Program Results (f16sace.r)