This manual relates to an old release of the Library.
The documentation for the current release is also available on this site.

NAG AD Library
F08 (Lapackeig)
Least Squares and Eigenvalue Problems (LAPACK)

Settings help

AD Name Style:


AD Specification Language:

F08 (Lapackeig) Chapter Introduction (FL Interface) – A description of the Chapter and an overview of the algorithms available.

Routine
Mark of
Introduction

Purpose
f08ae_a1w_f 27 nagf_lapackeig_dgeqrf_a1w
Performs a QR factorization of real general rectangular matrix
f08ah_a1w_f 27 nagf_lapackeig_dgelqf_a1w
Performs a LQ factorization of real general rectangular matrix
f08fa_a1w_f 27.1 nagf_lapackeig_dsyev_a1w
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix
f08ga_a1w_f 27 nagf_lapackeig_dspev_a1w
Computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix, packed storage
f08kb_a1w_f 27.1 nagf_lapackeig_dgesvd_a1w
Computes the singular value decomposition of a real matrix, optionally computing the left and/or right singular vectors
f08kd_a1w_f 26.2 nagf_lapackeig_dgesdd_a1w (symbolic adjoint mode)
Computes the singular value decomposition of a real matrix, optionally computing the left and/or right singular vectors (divide-and-conquer)
f08ke_a1w_f 27.1 nagf_lapackeig_dgebrd_a1w
Performs an orthogonal reduction of real general rectangular matrix to bidiagonal form
f08kp_a1w_f 27.1 nagf_lapackeig_zgesvd_a1w
Computes the singular value decomposition of a complex matrix, optionally computing the left and/or right singular vectors
f08me_a1w_f 27.1 nagf_lapackeig_dbdsqr_a1w
Performs an SVD of real bidiagonal matrix reduced from real general matrix