f08 Chapter Contents
f08 Chapter Introduction
NAG Library Manual

# NAG Library Function Documentnag_zgelqf (f08avc)

## 1  Purpose

nag_zgelqf (f08avc) computes the $LQ$ factorization of a complex $m$ by $n$ matrix.

## 2  Specification

 #include #include
 void nag_zgelqf (Nag_OrderType order, Integer m, Integer n, Complex a[], Integer pda, Complex tau[], NagError *fail)

## 3  Description

nag_zgelqf (f08avc) forms the $LQ$ factorization of an arbitrary rectangular complex $m$ by $n$ matrix. No pivoting is performed.
If $m\le n$, the factorization is given by:
 $A = L 0 Q$
where $L$ is an $m$ by $m$ lower triangular matrix (with real diagonal elements) and $Q$ is an $n$ by $n$ unitary matrix. It is sometimes more convenient to write the factorization as
 $A = L 0 Q1 Q2$
which reduces to
 $A = LQ1 ,$
where ${Q}_{1}$ consists of the first $m$ rows of $Q$, and ${Q}_{2}$ the remaining $n-m$ rows.
If $m>n$, $L$ is trapezoidal, and the factorization can be written
 $A = L1 L2 Q$
where ${L}_{1}$ is lower triangular and ${L}_{2}$ is rectangular.
The $LQ$ factorization of $A$ is essentially the same as the $QR$ factorization of ${A}^{\mathrm{H}}$, since
 $A = L 0 Q⇔AH= QH LH 0 .$
The matrix $Q$ is not formed explicitly but is represented as a product of $\mathrm{min}\phantom{\rule{0.125em}{0ex}}\left(m,n\right)$ elementary reflectors (see the f08 Chapter Introduction for details). Functions are provided to work with $Q$ in this representation (see Section 9).
Note also that for any $k, the information returned in the first $k$ rows of the array a represents an $LQ$ factorization of the first $k$ rows of the original matrix $A$.

None.

## 5  Arguments

1:    $\mathbf{order}$Nag_OrderTypeInput
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by ${\mathbf{order}}=\mathrm{Nag_RowMajor}$. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.
Constraint: ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ or $\mathrm{Nag_ColMajor}$.
2:    $\mathbf{m}$IntegerInput
On entry: $m$, the number of rows of the matrix $A$.
Constraint: ${\mathbf{m}}\ge 0$.
3:    $\mathbf{n}$IntegerInput
On entry: $n$, the number of columns of the matrix $A$.
Constraint: ${\mathbf{n}}\ge 0$.
4:    $\mathbf{a}\left[\mathit{dim}\right]$ComplexInput/Output
Note: the dimension, dim, of the array a must be at least
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pda}}×{\mathbf{n}}\right)$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}×{\mathbf{pda}}\right)$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
The $\left(i,j\right)$th element of the matrix $A$ is stored in
• ${\mathbf{a}}\left[\left(j-1\right)×{\mathbf{pda}}+i-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• ${\mathbf{a}}\left[\left(i-1\right)×{\mathbf{pda}}+j-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
On entry: the $m$ by $n$ matrix $A$.
On exit: if $m\le n$, the elements above the diagonal are overwritten by details of the unitary matrix $Q$ and the lower triangle is overwritten by the corresponding elements of the $m$ by $m$ lower triangular matrix $L$.
If $m>n$, the strictly upper triangular part is overwritten by details of the unitary matrix $Q$ and the remaining elements are overwritten by the corresponding elements of the $m$ by $n$ lower trapezoidal matrix $L$.
The diagonal elements of $L$ are real.
5:    $\mathbf{pda}$IntegerInput
On entry: the stride separating row or column elements (depending on the value of order) in the array a.
Constraints:
• if ${\mathbf{order}}=\mathrm{Nag_ColMajor}$, ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}\right)$;
• if ${\mathbf{order}}=\mathrm{Nag_RowMajor}$, ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
6:    $\mathbf{tau}\left[\mathit{dim}\right]$ComplexOutput
Note: the dimension, dim, of the array tau must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,\mathrm{min}\phantom{\rule{0.125em}{0ex}}\left({\mathbf{m}},{\mathbf{n}}\right)\right)$.
On exit: further details of the unitary matrix $Q$.
7:    $\mathbf{fail}$NagError *Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

## 6  Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.
On entry, argument $〈\mathit{\text{value}}〉$ had an illegal value.
NE_INT
On entry, ${\mathbf{m}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{m}}\ge 0$.
On entry, ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{n}}\ge 0$.
On entry, ${\mathbf{pda}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pda}}>0$.
NE_INT_2
On entry, ${\mathbf{pda}}=〈\mathit{\text{value}}〉$ and ${\mathbf{m}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{m}}\right)$.
On entry, ${\mathbf{pda}}=〈\mathit{\text{value}}〉$ and ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pda}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
See Section 3.6.6 in the Essential Introduction for further information.
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

## 7  Accuracy

The computed factorization is the exact factorization of a nearby matrix $\left(A+E\right)$, where
 $E2 = Oε A2 ,$
and $\epsilon$ is the machine precision.

## 8  Parallelism and Performance

nag_zgelqf (f08avc) is not threaded by NAG in any implementation.
nag_zgelqf (f08avc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

The total number of real floating-point operations is approximately $\frac{8}{3}{m}^{2}\left(3n-m\right)$ if $m\le n$ or $\frac{8}{3}{n}^{2}\left(3m-n\right)$ if $m>n$.
To form the unitary matrix $Q$ nag_zgelqf (f08avc) may be followed by a call to nag_zunglq (f08awc):
```nag_zunglq(order,n,n,MIN(m,n),&a,pda,tau,&fail)
```
but note that the first dimension of the array a, specified by the argument pda, must be at least n, which may be larger than was required by nag_zgelqf (f08avc).
When $m\le n$, it is often only the first $m$ rows of $Q$ that are required, and they may be formed by the call:
```nag_zunglq(order,m,n,m,&a,pda,tau,&fail)
```
To apply $Q$ to an arbitrary complex rectangular matrix $C$, nag_zgelqf (f08avc) may be followed by a call to nag_zunmlq (f08axc). For example,
```nag_zunmlq(order,Nag_LeftSide,Nag_ConjTrans,m,p,MIN(m,n),&a,pda,
tau,&c,pdc,&fail)```
forms the matrix product $C={Q}^{\mathrm{H}}C$, where $C$ is $m$ by $p$.
The real analogue of this function is nag_dgelqf (f08ahc).

## 10  Example

This example finds the minimum norm solutions of the under-determined systems of linear equations
 $Ax1= b1 and Ax2= b2$
where ${b}_{1}$ and ${b}_{2}$ are the columns of the matrix $B$,
 $A = 0.28-0.36i 0.50-0.86i -0.77-0.48i 1.58+0.66i -0.50-1.10i -1.21+0.76i -0.32-0.24i -0.27-1.15i 0.36-0.51i -0.07+1.33i -0.75+0.47i -0.08+1.01i$
and
 $B = -1.35+0.19i 4.83-2.67i 9.41-3.56i -7.28+3.34i -7.57+6.93i 0.62+4.53i .$

### 10.1  Program Text

Program Text (f08avce.c)

### 10.2  Program Data

Program Data (f08avce.d)

### 10.3  Program Results

Program Results (f08avce.r)