nag_bessel_k0_scaled (s18ccc) (PDF version)
s Chapter Contents
s Chapter Introduction
NAG Library Manual

NAG Library Function Document

nag_bessel_k0_scaled (s18ccc)

+ Contents

    1  Purpose
    7  Accuracy

1  Purpose

nag_bessel_k0_scaled (s18ccc) returns a value of the scaled modified Bessel function exK0x.

2  Specification

#include <nag.h>
#include <nags.h>
double  nag_bessel_k0_scaled (double x, NagError *fail)

3  Description

nag_bessel_k0_scaled (s18ccc) evaluates an approximation to exK0x, where K0 is a modified Bessel function of the second kind. The scaling factor ex removes most of the variation in K0x.
The function uses the same Chebyshev expansions as nag_bessel_k0 (s18acc), which returns the unscaled value of K0x.

4  References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover Publications

5  Arguments

1:     xdoubleInput
On entry: the argument x of the function.
Constraint: x>0.0.
2:     failNagError *Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

6  Error Indicators and Warnings

NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
NE_REAL_ARG_LE
On entry, x=value.
Constraint: x>0.0.

7  Accuracy

Relative errors in the argument are attenuated when propagated into the function value. When the accuracy of the argument is essentially limited by the machine precision, the accuracy of the function value will be similarly limited by at most a small multiple of the machine precision.

8  Parallelism and Performance

Not applicable.

9  Further Comments

None.

10  Example

This example reads values of the argument x from a file, evaluates the function at each value of x and prints the results.

10.1  Program Text

Program Text (s18ccce.c)

10.2  Program Data

Program Data (s18ccce.d)

10.3  Program Results

Program Results (s18ccce.r)


nag_bessel_k0_scaled (s18ccc) (PDF version)
s Chapter Contents
s Chapter Introduction
NAG Library Manual

© The Numerical Algorithms Group Ltd, Oxford, UK. 2014