nag_complex_polygamma (s14afc) (PDF version)
s Chapter Contents
s Chapter Introduction
NAG Library Manual

NAG Library Function Document

nag_complex_polygamma (s14afc)

+ Contents

    1  Purpose
    7  Accuracy

1  Purpose

nag_complex_polygamma (s14afc) returns the value of the kth derivative of the psi function ψz for complex z and k=0,1,,4.

2  Specification

#include <nag.h>
#include <nags.h>
Complex  nag_complex_polygamma (Complex z, Integer k, NagError *fail)

3  Description

nag_complex_polygamma (s14afc) evaluates an approximation to the kth derivative of the psi function ψz given by
ψ k z=dkdzk ψz=dkdzk ddz logeΓz ,
where z=x+iy is complex provided y0 and k=0,1,,4. If y=0, z is real and thus ψ k z is singular when z=0,-1,-2,.
Note that ψ k z is also known as the polygamma function. Specifically, ψ 0 z is often referred to as the digamma function and ψ 1 z as the trigamma function in the literature. Further details can be found in Abramowitz and Stegun (1972).
nag_complex_polygamma (s14afc) is based on a modification of the method proposed by Kölbig (1972).
To obtain the value of ψ k z when z is real, nag_real_polygamma (s14aec) can be used.

4  References

Abramowitz M and Stegun I A (1972) Handbook of Mathematical Functions (3rd Edition) Dover Publications
Kölbig K S (1972) Programs for computing the logarithm of the gamma function, and the digamma function, for complex arguments Comp. Phys. Comm. 4 221–226

5  Arguments

1:     zComplexInput
On entry: the argument z of the function.
Constraint: z.re must not be ‘too close’ (see Section 6) to a non-positive integer when z.im=0.0.
2:     kIntegerInput
On entry: the function ψkz to be evaluated.
Constraint: 0k4.
3:     failNagError *Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

6  Error Indicators and Warnings

NE_COMPLEX
On entry, z.re is ‘too close’ to a non-positive integer when z.im=0.0: z.re=value, nintz.re=value.
NE_INT
On entry, k=value.
Constraint: k4.
On entry, k=value.
Constraint: k0.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
NE_OVERFLOW_LIKELY
Evaluation abandoned due to likelihood of overflow.

7  Accuracy

Empirical tests have shown that the maximum relative error is a loss of approximately two decimal places of precision.

8  Parallelism and Performance

Not applicable.

9  Further Comments

None.

10  Example

This example evaluates the psi (trigamma) function ψ 1 z at z=-1.5+2.5i, and prints the results.

10.1  Program Text

Program Text (s14afce.c)

10.2  Program Data

Program Data (s14afce.d)

10.3  Program Results

Program Results (s14afce.r)


nag_complex_polygamma (s14afc) (PDF version)
s Chapter Contents
s Chapter Introduction
NAG Library Manual

© The Numerical Algorithms Group Ltd, Oxford, UK. 2014