hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_sparseig_complex_band_init (f12at)


    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example


nag_sparseig_complex_band_init (f12at) is a setup function for nag_sparseig_complex_band_solve (f12au) which may be used for finding some eigenvalues (and optionally the corresponding eigenvectors) of a standard or generalized eigenvalue problem defined by complex, banded, non-Hermitian matrices. The banded matrix must be stored using the LAPACK column ordered storage format for complex banded non-Hermitian matrices (see Band storage in the F07 Chapter Introduction).


[icomm, comm, ifail] = f12at(n, nev, ncv)
[icomm, comm, ifail] = nag_sparseig_complex_band_init(n, nev, ncv)


The pair of functions nag_sparseig_complex_band_init (f12at) and nag_sparseig_complex_band_solve (f12au) together with the option setting function nag_sparseig_complex_option (f12ar) are designed to calculate some of the eigenvalues, λ , (and optionally the corresponding eigenvectors, x ) of a standard eigenvalue problem Ax = λx , or of a generalized eigenvalue problem Ax = λBx  of order n , where n  is large and the coefficient matrices A  and B  are banded complex and non-Hermitian.
nag_sparseig_complex_band_init (f12at) is a setup function which must be called before the option setting function nag_sparseig_complex_option (f12ar) and the solver function nag_sparseig_complex_band_solve (f12au). Internally, nag_sparseig_complex_band_solve (f12au) makes calls to nag_sparseig_complex_iter (f12ap) and nag_sparseig_complex_proc (f12aq); the function documents for nag_sparseig_complex_iter (f12ap) and nag_sparseig_complex_proc (f12aq) should be consulted for details of the algorithm used.
This setup function initializes the communication arrays, sets (to their default values) all options that can be set by you via the option setting function nag_sparseig_complex_option (f12ar), and checks that the lengths of the communication arrays as passed by you are of sufficient length. For details of the options available and how to set them, see Description of the s in nag_sparseig_complex_option (f12ar).


Lehoucq R B (2001) Implicitly restarted Arnoldi methods and subspace iteration SIAM Journal on Matrix Analysis and Applications 23 551–562
Lehoucq R B and Scott J A (1996) An evaluation of software for computing eigenvalues of sparse nonsymmetric matrices Preprint MCS-P547-1195 Argonne National Laboratory
Lehoucq R B and Sorensen D C (1996) Deflation techniques for an implicitly restarted Arnoldi iteration SIAM Journal on Matrix Analysis and Applications 17 789–821
Lehoucq R B, Sorensen D C and Yang C (1998) ARPACK Users' Guide: Solution of Large-scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods SIAM, Philidelphia


Compulsory Input Parameters

1:     n int64int32nag_int scalar
The order of the matrix A (and the order of the matrix B for the generalized problem) that defines the eigenvalue problem.
Constraint: n>0.
2:     nev int64int32nag_int scalar
The number of eigenvalues to be computed.
Constraint: 0<nev<n-1.
3:     ncv int64int32nag_int scalar
The number of Lanczos basis vectors to use during the computation.
At present there is no a priori analysis to guide the selection of ncv relative to nev. However, it is recommended that ncv2×nev+1. If many problems of the same type are to be solved, you should experiment with increasing ncv while keeping nev fixed for a given test problem. This will usually decrease the required number of matrix-vector operations but it also increases the work and storage required to maintain the orthogonal basis vectors. The optimal ‘cross-over’ with respect to CPU time is problem dependent and must be determined empirically.
Constraint: nev+1<ncvn.

Optional Input Parameters


Output Parameters

1:     icommmax1,licomm int64int32nag_int array
Contains data to be communicated to nag_sparseig_complex_band_solve (f12au).
2:     commmax1,lcomm – complex array
Contains data to be communicated to nag_sparseig_complex_band_solve (f12au).
3:     ifail int64int32nag_int scalar
ifail=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Errors or warnings detected by the function:
Constraint: n>0.
Constraint: nev>0.
Constraint: ncv>nev+1 and ncvn.
The length of the integer array icomm is too small licomm =_, but must be at least _.
The length of the complex array comm is too small lcomm =_, but must be at least _.
An unexpected error has been triggered by this routine. Please contact NAG.
Your licence key may have expired or may not have been installed correctly.
Dynamic memory allocation failed.


Not applicable.

Further Comments



The use of nag_sparseig_complex_band_init (f12at) is illustrated in Example in nag_sparseig_complex_band_solve (f12au).
function f12at_example

fprintf('f12at example results\n\n');

nx = int64(10);
n = nx*nx;
nev = int64(4);
ncv = int64(10);
sigma = 0.4 + 0.6i;

% Construct the matrix A in banded form and store in AB.
% KU, KL are number of superdiagonals and subdiagonals within
% the band of matrices A and M.
kl = nx;
ku = nx;

% Construct ab and mb
ab = zeros(2*kl+ku+1,n);
mb = zeros(2*kl+ku+1,n);

% Main diagonal of A.
idiag = kl + ku + 1;
ab(idiag,1:n) = 4;
mb(idiag,1:n) = ab(idiag,1);

% First subdiagonal and superdiagonal of A.
isup = kl + ku;
isub = kl + ku + 2;
rho = 100;
h = 1/double(nx+1);
for i=1:nx
  lo = (i-1)*nx;
  for j=lo+1:lo+nx-1
    ab(isub,j+1) = -1 + 0.5*h*rho;
    ab(isup,j) = -1 - 0.5*h*rho;
mb(isub,2:n)   = 1;
mb(isup,1:n-1) = 1;

% kl-th subdiagonal and ku-th super-diagonal.
isup = kl + 1;
isub = 2*kl + ku + 1;
for i = 1:nx - 1
  lo = (i-1)*nx;
  for j = lo + 1:lo + nx
    ab(isup,nx+j) = -1;
    ab(isub,j) = -1;

resid = complex(zeros(100,1));

[icomm, comm, ifail] = f12at( ...
                              n, nev, ncv);
[icomm, comm, ifail] = f12ar( ...
                              'SHIFTED INVERSE', icomm, comm);
[icomm, comm, ifail] = f12ar( ...
                              'GENERALIZED', icomm, comm);

% Find eigenvalues closest in value to SIGMA and corresponding eigenvectors
[nconv, d, z, resid, v, comm, icomm, ifail] = ...
  f12au( ...
         kl, ku, complex(ab), complex(mb), sigma, resid, comm, icomm);

fprintf('\nRitz values closest to sigma:\n');

f12at example results

Ritz values closest to sigma:
   0.3610 + 0.7223i
   0.4598 + 0.7199i
   0.2868 + 0.7241i
   0.2410 + 0.7257i

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015