Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

Chapter Contents
Chapter Introduction
NAG Toolbox

# NAG Toolbox: nag_lapack_dtbcon (f07vg)

## Purpose

nag_lapack_dtbcon (f07vg) estimates the condition number of a real triangular band matrix.

## Syntax

[rcond, info] = f07vg(norm_p, uplo, diag, kd, ab, 'n', n)
[rcond, info] = nag_lapack_dtbcon(norm_p, uplo, diag, kd, ab, 'n', n)

## Description

nag_lapack_dtbcon (f07vg) estimates the condition number of a real triangular band matrix $A$, in either the $1$-norm or the $\infty$-norm:
 $κ1A=A1A-11 or κ∞A=A∞A-1∞ .$
Note that ${\kappa }_{\infty }\left(A\right)={\kappa }_{1}\left({A}^{\mathrm{T}}\right)$.
Because the condition number is infinite if $A$ is singular, the function actually returns an estimate of the reciprocal of the condition number.
The function computes ${‖A‖}_{1}$ or ${‖A‖}_{\infty }$ exactly, and uses Higham's implementation of Hager's method (see Higham (1988)) to estimate ${‖{A}^{-1}‖}_{1}$ or ${‖{A}^{-1}‖}_{\infty }$.

## References

Higham N J (1988) FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation ACM Trans. Math. Software 14 381–396

## Parameters

### Compulsory Input Parameters

1:     $\mathrm{norm_p}$ – string (length ≥ 1)
Indicates whether ${\kappa }_{1}\left(A\right)$ or ${\kappa }_{\infty }\left(A\right)$ is estimated.
${\mathbf{norm_p}}=\text{'1'}$ or $\text{'O'}$
${\kappa }_{1}\left(A\right)$ is estimated.
${\mathbf{norm_p}}=\text{'I'}$
${\kappa }_{\infty }\left(A\right)$ is estimated.
Constraint: ${\mathbf{norm_p}}=\text{'1'}$, $\text{'O'}$ or $\text{'I'}$.
2:     $\mathrm{uplo}$ – string (length ≥ 1)
Specifies whether $A$ is upper or lower triangular.
${\mathbf{uplo}}=\text{'U'}$
$A$ is upper triangular.
${\mathbf{uplo}}=\text{'L'}$
$A$ is lower triangular.
Constraint: ${\mathbf{uplo}}=\text{'U'}$ or $\text{'L'}$.
3:     $\mathrm{diag}$ – string (length ≥ 1)
Indicates whether $A$ is a nonunit or unit triangular matrix.
${\mathbf{diag}}=\text{'N'}$
$A$ is a nonunit triangular matrix.
${\mathbf{diag}}=\text{'U'}$
$A$ is a unit triangular matrix; the diagonal elements are not referenced and are assumed to be $1$.
Constraint: ${\mathbf{diag}}=\text{'N'}$ or $\text{'U'}$.
4:     $\mathrm{kd}$int64int32nag_int scalar
${k}_{d}$, the number of superdiagonals of the matrix $A$ if ${\mathbf{uplo}}=\text{'U'}$, or the number of subdiagonals if ${\mathbf{uplo}}=\text{'L'}$.
Constraint: ${\mathbf{kd}}\ge 0$.
5:     $\mathrm{ab}\left(\mathit{ldab},:\right)$ – double array
The first dimension of the array ab must be at least ${\mathbf{kd}}+1$.
The second dimension of the array ab must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
The $n$ by $n$ triangular band matrix $A$.
The matrix is stored in rows $1$ to ${k}_{d}+1$, more precisely,
• if ${\mathbf{uplo}}=\text{'U'}$, the elements of the upper triangle of $A$ within the band must be stored with element ${A}_{ij}$ in ${\mathbf{ab}}\left({k}_{d}+1+i-j,j\right)\text{​ for ​}\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,j-{k}_{d}\right)\le i\le j$;
• if ${\mathbf{uplo}}=\text{'L'}$, the elements of the lower triangle of $A$ within the band must be stored with element ${A}_{ij}$ in ${\mathbf{ab}}\left(1+i-j,j\right)\text{​ for ​}j\le i\le \mathrm{min}\phantom{\rule{0.125em}{0ex}}\left(n,j+{k}_{d}\right)\text{.}$
If ${\mathbf{diag}}=\text{'U'}$, the diagonal elements of $A$ are assumed to be $1$, and are not referenced.

### Optional Input Parameters

1:     $\mathrm{n}$int64int32nag_int scalar
Default: the second dimension of the array ab.
$n$, the order of the matrix $A$.
Constraint: ${\mathbf{n}}\ge 0$.

### Output Parameters

1:     $\mathrm{rcond}$ – double scalar
An estimate of the reciprocal of the condition number of $A$. rcond is set to zero if exact singularity is detected or the estimate underflows. If rcond is less than machine precision, $A$ is singular to working precision.
2:     $\mathrm{info}$int64int32nag_int scalar
${\mathbf{info}}=0$ unless the function detects an error (see Error Indicators and Warnings).

## Error Indicators and Warnings

${\mathbf{info}}<0$
If ${\mathbf{info}}=-i$, argument $i$ had an illegal value. An explanatory message is output, and execution of the program is terminated.

## Accuracy

The computed estimate rcond is never less than the true value $\rho$, and in practice is nearly always less than $10\rho$, although examples can be constructed where rcond is much larger.

A call to nag_lapack_dtbcon (f07vg) involves solving a number of systems of linear equations of the form $Ax=b$ or ${A}^{\mathrm{T}}x=b$; the number is usually $4$ or $5$ and never more than $11$. Each solution involves approximately $2nk$ floating-point operations (assuming $n\gg k$) but takes considerably longer than a call to nag_lapack_dtbtrs (f07ve) with one right-hand side, because extra care is taken to avoid overflow when $A$ is approximately singular.
The complex analogue of this function is nag_lapack_ztbcon (f07vu).

## Example

This example estimates the condition number in the $1$-norm of the matrix $A$, where
 $A= -4.16 0.00 0.00 0.00 -2.25 4.78 0.00 0.00 0.00 5.86 6.32 0.00 0.00 0.00 -4.82 0.16 .$
Here $A$ is treated as a lower triangular band matrix with one subdiagonal. The true condition number in the $1$-norm is $69.62$.
```function f07vg_example

fprintf('f07vg example results\n\n');

% Condition number of A, where A is lower triangular banded
% and stored in triangular/symmetric banded format
kd = int64(1);
ab = [-4.16, 4.78,  6.32, 0.16;
-2.25, 5.86, -4.82, 0.00];

% Reciprocal condition number
norm_p = '1';
uplo = 'L';
diag = 'N';
[rcond, info] = f07vg( ...
norm_p, uplo, diag, kd, ab);

fprintf('Estimate of condition number = %9.2e\n', 1/rcond);

```
```f07vg example results

Estimate of condition number =  6.96e+01
```

Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015