hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_lapack_zhptrs (f07ps)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_lapack_zhptrs (f07ps) solves a complex Hermitian indefinite system of linear equations with multiple right-hand sides,
AX=B ,  
where A has been factorized by nag_lapack_zhptrf (f07pr), using packed storage.

Syntax

[b, info] = f07ps(uplo, ap, ipiv, b, 'n', n, 'nrhs_p', nrhs_p)
[b, info] = nag_lapack_zhptrs(uplo, ap, ipiv, b, 'n', n, 'nrhs_p', nrhs_p)

Description

nag_lapack_zhptrs (f07ps) is used to solve a complex Hermitian indefinite system of linear equations AX=B, the function must be preceded by a call to nag_lapack_zhptrf (f07pr) which computes the Bunch–Kaufman factorization of A, using packed storage.
If uplo='U', A=PUDUHPT, where P is a permutation matrix, U is an upper triangular matrix and D is an Hermitian block diagonal matrix with 1 by 1 and 2 by 2 blocks; the solution X is computed by solving PUDY=B and then UHPTX=Y.
If uplo='L', A=PLDLHPT, where L is a lower triangular matrix; the solution X is computed by solving PLDY=B and then LHPTX=Y.

References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

Parameters

Compulsory Input Parameters

1:     uplo – string (length ≥ 1)
Specifies how A has been factorized.
uplo='U'
A=PUDUHPT, where U is upper triangular.
uplo='L'
A=PLDLHPT, where L is lower triangular.
Constraint: uplo='U' or 'L'.
2:     ap: – complex array
The dimension of the array ap must be at least max1,n×n+1/2
The factorization of A stored in packed form, as returned by nag_lapack_zhptrf (f07pr).
3:     ipiv: int64int32nag_int array
The dimension of the array ipiv must be at least max1,n
Details of the interchanges and the block structure of D, as returned by nag_lapack_zhptrf (f07pr).
4:     bldb: – complex array
The first dimension of the array b must be at least max1,n.
The second dimension of the array b must be at least max1,nrhs_p.
The n by r right-hand side matrix B.

Optional Input Parameters

1:     n int64int32nag_int scalar
Default: the first dimension of the array ap and the second dimension of the array ap. (An error is raised if these dimensions are not equal.)
n, the order of the matrix A.
Constraint: n0.
2:     nrhs_p int64int32nag_int scalar
Default: the second dimension of the array b.
r, the number of right-hand sides.
Constraint: nrhs_p0.

Output Parameters

1:     bldb: – complex array
The first dimension of the array b will be max1,n.
The second dimension of the array b will be max1,nrhs_p.
The n by r solution matrix X.
2:     info int64int32nag_int scalar
info=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

   info<0
If info=-i, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.

Accuracy

For each right-hand side vector b, the computed solution x is the exact solution of a perturbed system of equations A+Ex=b, where cn is a modest linear function of n, and ε is the machine precision
If x^ is the true solution, then the computed solution x satisfies a forward error bound of the form
x-x^ x cncondA,xε  
where condA,x=A-1Ax/xcondA=A-1AκA.
Note that condA,x can be much smaller than condA.
Forward and backward error bounds can be computed by calling nag_lapack_zhprfs (f07pv), and an estimate for κA (=κ1A) can be obtained by calling nag_lapack_zhpcon (f07pu).

Further Comments

The total number of real floating-point operations is approximately 8n2r.
This function may be followed by a call to nag_lapack_zhprfs (f07pv) to refine the solution and return an error estimate.
The real analogue of this function is nag_lapack_dsptrs (f07pe).

Example

This example solves the system of equations AX=B, where
A= -1.36+0.00i 1.58+0.90i 2.21-0.21i 3.91+1.50i 1.58-0.90i -8.87+0.00i -1.84-0.03i -1.78+1.18i 2.21+0.21i -1.84+0.03i -4.63+0.00i 0.11+0.11i 3.91-1.50i -1.78-1.18i 0.11-0.11i -1.84+0.00i  
and
B= 7.79+05.48i -35.39+18.01i -0.77-16.05i 4.23-70.02i -9.58+03.88i -24.79-08.40i 2.98-10.18i 28.68-39.89i .  
Here A is Hermitian indefinite, stored in packed form, and must first be factorized by nag_lapack_zhptrf (f07pr).
function f07ps_example


fprintf('f07ps example results\n\n');

% Hermitian indefinite matrix A (Lower triangular part stored in packed form)
uplo = 'L';
n = int64(4);
ap = [-1.36 + 0i;  1.58 - 0.9i;   2.21 + 0.21i;  3.91 - 1.5i;
                  -8.87 + 0i;    -1.84 + 0.03i; -1.78 - 1.18i;
                                 -4.63 + 0i;     0.11 - 0.11i;
                                                -1.84 + 0i];

% Factorize
[apf, ipiv, info] = f07pr( ...
                           uplo, n, ap);

% RHS
b = [ 7.79 +  5.48i, -35.39 + 18.01i;
     -0.77 - 16.05i,   4.23 - 70.02i;
     -9.58 +  3.88i, -24.79 -  8.40i;
      2.98 - 10.18i,  28.68 - 39.89i];

% Solve
[x, info] = f07ps( ...
                   uplo, apf, ipiv, b);

disp('Solution(s)');
disp(x);


f07ps example results

Solution(s)
   1.0000 - 1.0000i   3.0000 - 4.0000i
  -1.0000 + 2.0000i  -1.0000 + 5.0000i
   3.0000 - 2.0000i   7.0000 - 2.0000i
   2.0000 + 1.0000i  -8.0000 + 6.0000i


PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015