Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

Chapter Contents
Chapter Introduction
NAG Toolbox

# NAG Toolbox: nag_lapack_zhetri (f07mw)

## Purpose

nag_lapack_zhetri (f07mw) computes the inverse of a complex Hermitian indefinite matrix $A$, where $A$ has been factorized by nag_lapack_zhetrf (f07mr).

## Syntax

[a, info] = f07mw(uplo, a, ipiv, 'n', n)
[a, info] = nag_lapack_zhetri(uplo, a, ipiv, 'n', n)

## Description

nag_lapack_zhetri (f07mw) is used to compute the inverse of a complex Hermitian indefinite matrix $A$, the function must be preceded by a call to nag_lapack_zhetrf (f07mr), which computes the Bunch–Kaufman factorization of $A$.
If ${\mathbf{uplo}}=\text{'U'}$, $A=PUD{U}^{\mathrm{H}}{P}^{\mathrm{T}}$ and ${A}^{-1}$ is computed by solving ${U}^{\mathrm{H}}{P}^{\mathrm{T}}XPU={D}^{-1}$ for $X$.
If ${\mathbf{uplo}}=\text{'L'}$, $A=PLD{L}^{\mathrm{H}}{P}^{\mathrm{T}}$ and ${A}^{-1}$ is computed by solving ${L}^{\mathrm{H}}{P}^{\mathrm{T}}XPL={D}^{-1}$ for $X$.

## References

Du Croz J J and Higham N J (1992) Stability of methods for matrix inversion IMA J. Numer. Anal. 12 1–19

## Parameters

### Compulsory Input Parameters

1:     $\mathrm{uplo}$ – string (length ≥ 1)
Specifies how $A$ has been factorized.
${\mathbf{uplo}}=\text{'U'}$
$A=PUD{U}^{\mathrm{H}}{P}^{\mathrm{T}}$, where $U$ is upper triangular.
${\mathbf{uplo}}=\text{'L'}$
$A=PLD{L}^{\mathrm{H}}{P}^{\mathrm{T}}$, where $L$ is lower triangular.
Constraint: ${\mathbf{uplo}}=\text{'U'}$ or $\text{'L'}$.
2:     $\mathrm{a}\left(\mathit{lda},:\right)$ – complex array
The first dimension of the array a must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
The second dimension of the array a must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
Details of the factorization of $A$, as returned by nag_lapack_zhetrf (f07mr).
3:     $\mathrm{ipiv}\left(:\right)$int64int32nag_int array
The dimension of the array ipiv must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$
Details of the interchanges and the block structure of $D$, as returned by nag_lapack_zhetrf (f07mr).

### Optional Input Parameters

1:     $\mathrm{n}$int64int32nag_int scalar
Default: the first dimension of the array a and the second dimension of the arrays a, ipiv.
$n$, the order of the matrix $A$.
Constraint: ${\mathbf{n}}\ge 0$.

### Output Parameters

1:     $\mathrm{a}\left(\mathit{lda},:\right)$ – complex array
The first dimension of the array a will be $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
The second dimension of the array a will be $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
The factorization stores the $n$ by $n$ Hermitian matrix ${A}^{-1}$.
If ${\mathbf{uplo}}=\text{'U'}$, the upper triangle of ${A}^{-1}$ is stored in the upper triangular part of the array.
If ${\mathbf{uplo}}=\text{'L'}$, the lower triangle of ${A}^{-1}$ is stored in the lower triangular part of the array.
2:     $\mathrm{info}$int64int32nag_int scalar
${\mathbf{info}}=0$ unless the function detects an error (see Error Indicators and Warnings).

## Error Indicators and Warnings

Cases prefixed with W are classified as warnings and do not generate an error of type NAG:error_n. See nag_issue_warnings.

${\mathbf{info}}<0$
If ${\mathbf{info}}=-i$, argument $i$ had an illegal value. An explanatory message is output, and execution of the program is terminated.
W  ${\mathbf{info}}>0$
Element $_$ of the diagonal is exactly zero. $D$ is singular and the inverse of $A$ cannot be computed.

## Accuracy

The computed inverse $X$ satisfies a bound of the form
• if ${\mathbf{uplo}}=\text{'U'}$, $\left|D{U}^{\mathrm{H}}{P}^{\mathrm{T}}XPU-I\right|\le c\left(n\right)\epsilon \left(\left|D\right|\left|{U}^{\mathrm{H}}\right|{P}^{\mathrm{T}}\left|X\right|P\left|U\right|+\left|D\right|\left|{D}^{-1}\right|\right)$;
• if ${\mathbf{uplo}}=\text{'L'}$, $\left|D{L}^{\mathrm{H}}{P}^{\mathrm{T}}XPL-I\right|\le c\left(n\right)\epsilon \left(\left|D\right|\left|{L}^{\mathrm{H}}\right|{P}^{\mathrm{T}}\left|X\right|P\left|L\right|+\left|D\right|\left|{D}^{-1}\right|\right)$,
$c\left(n\right)$ is a modest linear function of $n$, and $\epsilon$ is the machine precision

The total number of real floating-point operations is approximately $\frac{8}{3}{n}^{3}$.
The real analogue of this function is nag_lapack_dsytri (f07mj).

## Example

This example computes the inverse of the matrix $A$, where
 $A= -1.36+0.00i 1.58+0.90i 2.21-0.21i 3.91+1.50i 1.58-0.90i -8.87+0.00i -1.84-0.03i -1.78+1.18i 2.21+0.21i -1.84+0.03i -4.63+0.00i 0.11+0.11i 3.91-1.50i -1.78-1.18i 0.11-0.11i -1.84+0.00i .$
Here $A$ is Hermitian indefinite and must first be factorized by nag_lapack_zhetrf (f07mr).
```function f07mw_example

fprintf('f07mw example results\n\n');

% Hermitian indefinite matrix A (Lower triangular part stored)
uplo = 'L';
a = [-1.36 + 0i,     0    + 0i,     0    + 0i,      0    + 0i;
1.58 - 0.90i, -8.87 + 0i,     0    + 0i,      0    + 0i;
2.21 + 0.21i, -1.84 + 0.03i, -4.63 + 0i,      0    + 0i;
3.91 - 1.50i, -1.78 - 1.18i,  0.11 - 0.11i,  -1.84 + 0i];

% Factorize
[af, ipiv, info] = f07mr( ...
uplo, a);

% Invert
[ainv, info] = f07mw( ...
uplo, af, ipiv);

[ifail] = x04da( ...
uplo, 'Non-unit', ainv, 'Inverse');

```
```f07mw example results

Inverse
1       2       3       4
1   0.0826
0.0000

2  -0.0335 -0.1408
0.0440  0.0000

3   0.0603  0.0422 -0.2007
-0.0105 -0.0222  0.0000

4   0.2391  0.0304  0.0982  0.0073
-0.0926  0.0203 -0.0635  0.0000
```