hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_lapack_dpptrf (f07gd)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_lapack_dpptrf (f07gd) computes the Cholesky factorization of a real symmetric positive definite matrix, using packed storage.

Syntax

[ap, info] = f07gd(uplo, n, ap)
[ap, info] = nag_lapack_dpptrf(uplo, n, ap)

Description

nag_lapack_dpptrf (f07gd) forms the Cholesky factorization of a real symmetric positive definite matrix A either as A=UTU if uplo='U' or A=LLT if uplo='L', where U is an upper triangular matrix and L is lower triangular, using packed storage.

References

Demmel J W (1989) On floating-point errors in Cholesky LAPACK Working Note No. 14 University of Tennessee, Knoxville http://www.netlib.org/lapack/lawnspdf/lawn14.pdf
Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

Parameters

Compulsory Input Parameters

1:     uplo – string (length ≥ 1)
Specifies whether the upper or lower triangular part of A is stored and how A is to be factorized.
uplo='U'
The upper triangular part of A is stored and A is factorized as UTU, where U is upper triangular.
uplo='L'
The lower triangular part of A is stored and A is factorized as LLT, where L is lower triangular.
Constraint: uplo='U' or 'L'.
2:     n int64int32nag_int scalar
n, the order of the matrix A.
Constraint: n0.
3:     ap: – double array
The dimension of the array ap must be at least max1,n×n+1/2
The n by n symmetric matrix A, packed by columns.
More precisely,
  • if uplo='U', the upper triangle of A must be stored with element Aij in api+jj-1/2 for ij;
  • if uplo='L', the lower triangle of A must be stored with element Aij in api+2n-jj-1/2 for ij.

Optional Input Parameters

None.

Output Parameters

1:     ap: – double array
The dimension of the array ap will be max1,n×n+1/2
If info=0, the factor U or L from the Cholesky factorization A=UTU or A=LLT, in the same storage format as A.
2:     info int64int32nag_int scalar
info=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

   info<0
If info=-i, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.
   info>0
The leading minor of order _ is not positive definite and the factorization could not be completed. Hence A itself is not positive definite. This may indicate an error in forming the matrix A. To factorize a symmetric matrix which is not positive definite, call nag_lapack_dsptrf (f07pd) instead.

Accuracy

If uplo='U', the computed factor U is the exact factor of a perturbed matrix A+E, where
EcnεUTU ,  
cn is a modest linear function of n, and ε is the machine precision.
If uplo='L', a similar statement holds for the computed factor L. It follows that eijcnεaiiajj.

Further Comments

The total number of floating-point operations is approximately 13n3.
A call to nag_lapack_dpptrf (f07gd) may be followed by calls to the functions:
The complex analogue of this function is nag_lapack_zpptrf (f07gr).

Example

This example computes the Cholesky factorization of the matrix A, where
A= 4.16 -3.12 0.56 -0.10 -3.12 5.03 -0.83 1.18 0.56 -0.83 0.76 0.34 -0.10 1.18 0.34 1.18 ,  
using packed storage.
function f07gd_example


fprintf('f07gd example results\n\n');

% Symmetric matrix A, lower triangular part packed in ap
uplo = 'L';
n = int64(4);
ap = [4.16 -3.12  0.56 -0.10 ...
            5.03 -0.83  1.18 ...
                  0.76  0.34 ...
                        1.18];

[L, info] = f07gd( ...
                   uplo, n, ap);

[ifail] = x04cc( ...
                 uplo, 'N', n, L, 'Cholesky factor L');


f07gd example results

 Cholesky factor L
             1          2          3          4
 1      2.0396
 2     -1.5297     1.6401
 3      0.2746    -0.2500     0.7887
 4     -0.0490     0.6737     0.6617     0.5347

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015