hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_lapack_zgtsv (f07cn)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_lapack_zgtsv (f07cn) computes the solution to a complex system of linear equations
AX=B ,  
where A is an n by n tridiagonal matrix and X and B are n by r matrices.

Syntax

[dl, d, du, b, info] = f07cn(dl, d, du, b, 'n', n, 'nrhs_p', nrhs_p)
[dl, d, du, b, info] = nag_lapack_zgtsv(dl, d, du, b, 'n', n, 'nrhs_p', nrhs_p)

Description

nag_lapack_zgtsv (f07cn) uses Gaussian elimination with partial pivoting and row interchanges to solve the equations AX=B . The matrix A  is factorized as A=PLU , where P  is a permutation matrix, L  is unit lower triangular with at most one nonzero subdiagonal element per column, and U  is an upper triangular band matrix, with two superdiagonals.
Note that the equations ATX=B may be solved by interchanging the order of the arguments du and dl.

References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia http://www.netlib.org/lapack/lug

Parameters

Compulsory Input Parameters

1:     dl: – complex array
The dimension of the array dl must be at least max1,n-1
Must contain the n-1 subdiagonal elements of the matrix A.
2:     d: – complex array
The dimension of the array d must be at least max1,n
Must contain the n diagonal elements of the matrix A.
3:     du: – complex array
The dimension of the array du must be at least max1,n-1
Must contain the n-1 superdiagonal elements of the matrix A.
4:     bldb: – complex array
The first dimension of the array b must be at least max1,n.
The second dimension of the array b must be at least max1,nrhs_p.
Note: to solve the equations Ax=b, where b is a single right-hand side, b may be supplied as a one-dimensional array with length ldb=max1,n.
The n by r right-hand side matrix B.

Optional Input Parameters

1:     n int64int32nag_int scalar
Default: the first dimension of the array b and the dimension of the array d.
n, the number of linear equations, i.e., the order of the matrix A.
Constraint: n0.
2:     nrhs_p int64int32nag_int scalar
Default: the second dimension of the array b.
r, the number of right-hand sides, i.e., the number of columns of the matrix B.
Constraint: nrhs_p0.

Output Parameters

1:     dl: – complex array
The dimension of the array dl will be max1,n-1
If no constraints are violated, dl stores the (n-2) elements of the second superdiagonal of the upper triangular matrix U from the LU factorization of A, in dl1,dl2,,dln-2.
2:     d: – complex array
The dimension of the array d will be max1,n
If no constraints are violated, d stores the n diagonal elements of the upper triangular matrix U from the LU factorization of A.
3:     du: – complex array
The dimension of the array du will be max1,n-1
If no constraints are violated, du stores the n-1 elements of the first superdiagonal of U.
4:     bldb: – complex array
The first dimension of the array b will be max1,n.
The second dimension of the array b will be max1,nrhs_p.
Note: to solve the equations Ax=b, where b is a single right-hand side, b may be supplied as a one-dimensional array with length ldb=max1,n.
If info=0, the n by r solution matrix X.
5:     info int64int32nag_int scalar
info=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Cases prefixed with W are classified as warnings and do not generate an error of type NAG:error_n. See nag_issue_warnings.

   info<0
If info=-i, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.
W  info>0
Element _ of the diagonal is exactly zero, and the solution has not been computed. The factorization has not been completed unless n=_.

Accuracy

The computed solution for a single right-hand side, x^ , satisfies an equation of the form
A+E x^ = b ,  
where
E1 = Oε A1  
and ε  is the machine precision. An approximate error bound for the computed solution is given by
x^-x 1 x1 κA E1 A1 ,  
where κA = A-11 A1 , the condition number of A  with respect to the solution of the linear equations. See Section 4.4 of Anderson et al. (1999) for further details.
Alternatives to nag_lapack_zgtsv (f07cn), which return condition and error estimates are nag_linsys_complex_tridiag_solve (f04cc) and nag_lapack_zgtsvx (f07cp).

Further Comments

The total number of floating-point operations required to solve the equations AX=B  is proportional to nr .
The real analogue of this function is nag_lapack_dgtsv (f07ca).

Example

This example solves the equations
Ax=b ,  
where A  is the tridiagonal matrix
A = -1.3+1.3i 2.0-1.0i 0.0i+0.0 0.0i+0.0 0.0i+0.0 1.0-2.0i -1.3+1.3i 2.0+1.0i 0.0i+0.0 0.0i+0.0 0.0i+0.0 1.0+1.0i -1.3+3.3i -1.0+1.0i 0.0i+0.0 0.0i+0.0 0.0i+0.0 2.0-3.0i -0.3+4.3i 1.0-1.0i 0.0i+0.0 0.0i+0.0 0.0i+0.0 1.0+1.0i -3.3+1.3i  
and
b = 2.4-05.0i 3.4+18.2i -14.7+09.7i 31.9-07.7i -1.0+01.6i .  
function f07cn_example


fprintf('f07cn example results\n\n');

% Tridiagonal matrix stored by diagonals
du = [              2   - 1i     2   + 1i    -1   + 1i     1   - 1i  ];
d  = [-1.3 + 1.3i  -1.3 + 1.3i  -1.3 + 3.3i  -0.3 + 4.3i  -3.3 + 1.3i];
dl = [ 1   - 2i     1   + 1i     2   - 3i     1   + 1i               ];

% Rhs B
b = [  2.4 -  5.0i;
       3.4 + 18.2i;
     -14.7 +  9.7i;
      31.9 -  7.7i;
      -1   +  1.6i];

% Solve for x
[dl, d, du, x, info] = f07cn( ...
                              dl, d, du, b);

disp('Solution');
disp(x);


f07cn example results

Solution
   1.0000 + 1.0000i
   3.0000 - 1.0000i
   4.0000 + 5.0000i
  -1.0000 - 2.0000i
   1.0000 - 1.0000i


PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015