hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_lapack_dgbtrf (f07bd)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_lapack_dgbtrf (f07bd) computes the LU factorization of a real m by n band matrix.

Syntax

[ab, ipiv, info] = f07bd(m, kl, ku, ab, 'n', n)
[ab, ipiv, info] = nag_lapack_dgbtrf(m, kl, ku, ab, 'n', n)

Description

nag_lapack_dgbtrf (f07bd) forms the LU factorization of a real m by n band matrix A using partial pivoting, with row interchanges. Usually m=n, and then, if A has kl nonzero subdiagonals and ku nonzero superdiagonals, the factorization has the form A=PLU, where P is a permutation matrix, L is a lower triangular matrix with unit diagonal elements and at most kl nonzero elements in each column, and U is an upper triangular band matrix with kl+ku superdiagonals.
Note that L is not a band matrix, but the nonzero elements of L can be stored in the same space as the subdiagonal elements of A. U is a band matrix but with kl additional superdiagonals compared with A. These additional superdiagonals are created by the row interchanges.

References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

Parameters

Compulsory Input Parameters

1:     m int64int32nag_int scalar
m, the number of rows of the matrix A.
Constraint: m0.
2:     kl int64int32nag_int scalar
kl, the number of subdiagonals within the band of the matrix A.
Constraint: kl0.
3:     ku int64int32nag_int scalar
ku, the number of superdiagonals within the band of the matrix A.
Constraint: ku0.
4:     abldab: – double array
The first dimension of the array ab must be at least 2×kl+ku+1.
The second dimension of the array ab must be at least max1,n.
The m by n matrix A.
The matrix is stored in rows kl+1 to 2kl+ku+1; the first kl rows need not be set, more precisely, the element Aij must be stored in
abkl+ku+1+i-jj=Aij  for ​max1,j-kuiminm,j+kl. 
See Further Comments in nag_lapack_dgbsv (f07ba) for further details.

Optional Input Parameters

1:     n int64int32nag_int scalar
Default: the second dimension of the array ab.
n, the number of columns of the matrix A.
Constraint: n0.

Output Parameters

1:     abldab: – double array
The first dimension of the array ab will be 2×kl+ku+1.
The second dimension of the array ab will be max1,n.
If info0, ab stores details of the factorization.
The upper triangular band matrix U, with kl+ku superdiagonals, is stored in rows 1 to kl+ku+1 of the array, and the multipliers used to form the matrix L are stored in rows kl+ku+2 to 2kl+ku+1.
2:     ipivminm,n int64int32nag_int array
The pivot indices that define the permutation matrix. At the ith step, if ipivi>i then row i of the matrix A was interchanged with row ipivi, for i=1,2,,minm,n. ipivii indicates that, at the ith step, a row interchange was not required.
3:     info int64int32nag_int scalar
info=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Cases prefixed with W are classified as warnings and do not generate an error of type NAG:error_n. See nag_issue_warnings.

   info<0
If info=-i, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.
W  info>0
Element _ of the diagonal is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations.

Accuracy

The computed factors L and U are the exact factors of a perturbed matrix A+E, where
EckεPLU ,  
ck is a modest linear function of k=kl+ku+1, and ε is the machine precision. This assumes kminm,n.

Further Comments

The total number of floating-point operations varies between approximately 2nklku+1 and 2nklkl+ku+1, depending on the interchanges, assuming m=nkl and nku.
A call to nag_lapack_dgbtrf (f07bd) may be followed by calls to the functions:
The complex analogue of this function is nag_lapack_zgbtrf (f07br).

Example

This example computes the LU factorization of the matrix A, where
A= -0.23 2.54 -3.66 0.00 -6.98 2.46 -2.73 -2.13 0.00 2.56 2.46 4.07 0.00 0.00 -4.78 -3.82 .  
Here A is treated as a band matrix with one subdiagonal and two superdiagonals.
function f07bd_example


fprintf('f07bd example results\n\n');

m  = int64(4);
kl = int64(1);
ku = int64(2);
ab = [ 0,    0,     0,     0;
       0,    0,    -3.66, -2.13;
       0,    2.54, -2.73,  4.07;
      -0.23, 2.46,  2.46, -3.82;
      -6.98, 2.56, -4.78,  0];

[abf, ipiv, info] = f07bd( ...
                           m, kl, ku, ab);

mtitle = 'Details of factorization';
[ifail] = x04ce( ...
                 m, m, kl, kl+ku, abf, mtitle);
fprintf('\n');
disp('Pivot indices');
disp(double(ipiv'));


f07bd example results

 Details of factorization
             1          2          3          4
 1     -6.9800     2.4600    -2.7300    -2.1300
 2      0.0330     2.5600     2.4600     4.0700
 3                 0.9605    -5.9329    -3.8391
 4                            0.8057    -0.7269

Pivot indices
     2     3     3     4


PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015