None.
None.
Open in the MATLAB editor: e04np_example
function e04np_example fprintf('e04np example results\n\n'); start = 'C'; m = int64(8); n = int64(7); lenc = int64(0); ncolh = int64(7); iobj = int64(8); objadd = 0; prob = ' '; % A elements by column a = [ 0.02; 0.02; 0.03; 1; 0.7; 0.02; 0.15; -200; 0.06; 0.75; 0.03; 0.04; 0.05; 0.04; 1; -2000; 0.02; 1; 0.01; 0.08; 0.08; 0.8; -2000; 1; 0.12; 0.02; 0.02; 0.75; 0.04; -2000; 0.01; 0.8; 0.02; 1; 0.02; 0.06; 0.02; -2000; 1; 0.01; 0.01; 0.97; 0.01; 400; 0.97; 0.03; 1; 400]; % Row indices of nonzero elments of A irow = int64([ 7; 5; 3; 1; 6; 4; 2; 8; 7; 6; 5; 4; 3; 2; 1; 8; 2; 1; 4; 3; 7; 6; 8; 1; 7; 3; 4; 6; 2; 8; 5; 6; 7; 1; 2; 3; 4; 8; 1; 2; 3; 6; 7; 8; 7; 2; 1; 8]); % Index in a of start of column icolzp = int64([1;9;17;24;31;39;45;49]); % Bounds on variables and constraints bl(1:n) = [ 0; 0; 400; 100; 0; 0; 0;]; bu(1:n) = [ 200; 2500; 800; 700; 1500;1e25;1e25]; bl(n+1:n+m) = [2000;-1e25;-1e25;-1e25;-1e25;1500; 250;-1e25]; bu(n+1:n+m) = [2000; 60; 100; 40; 30;1e25; 300; 1e25]; c = [0]; names = {' '}; helast = zeros(m+n,1,'int64'); hs = zeros(m+n,1,'int64'); x = zeros(m+n,1); ns = int64(0); % Initialize and set options [cw, iw, rw, ifail] = e04np; [cw, iw, rw, ifail] = e04ns('NoList', cw, iw, rw); [cw, iw, rw, ifail] = e04ns('Print Level = 0', cw, iw, rw); [hs, x, pi, rc, ns, ninf, sinf, obj, cuser, cw, iw, rw, ifail] = ... e04nq(... start, @qphx, m, n, lenc, ncolh, iobj, objadd, prob, a, ... irow, icolzp, bl, bu, c, names, helast, hs, x, ns, cw, iw, rw); fprintf('Minimum value : %10.1f\n\n',obj); fprintf('Found at x:\n '); fprintf(' %8.1f',x(1:n)); fprintf('\nLinear contrained values Ax:\n '); fprintf(' %8.1f',x(n+1:n+m)); fprintf('\n'); function [hx, user] = qphx(ncolh, x, nstate, user) hx = zeros(ncolh, 1); hx(1) = 2*x(1); hx(2) = 2*x(2); hx(3) = 2*(x(3)+x(4)); hx(4) = hx(3); hx(5) = 2*x(5); hx(6) = 2*(x(6)+x(7)); hx(7) = hx(6);
e04np example results Minimum value : -1847784.7 Found at x: 0.0 349.4 648.9 172.8 407.5 271.4 150.0 Linear contrained values Ax: 2000.0 49.2 100.0 32.1 14.6 1500.0 250.0 -2988690.4