hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_sum_withdraw_conjugate_complex_sep (c06gc)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_sum_conjugate_complex_sep (c06gc) forms the complex conjugate of a sequence of n data values.
Note: this function is scheduled to be withdrawn, please see c06gc in Advice on Replacement Calls for Withdrawn/Superseded Routines..

Syntax

[y, ifail] = c06gc(y, 'n', n)
[y, ifail] = nag_sum_withdraw_conjugate_complex_sep(y, 'n', n)

Description

This is a utility function for use in conjunction with nag_sum_fft_complex_1d_nowork (c06ec) or nag_sum_fft_complex_1d_sep (c06fc) to calculate inverse discrete Fourier transforms (see the C06 Chapter Introduction).

References

None.

Parameters

Compulsory Input Parameters

1:     yn – double array
If y is declared with bounds 0:n-1 in the function from which nag_sum_conjugate_complex_sep (c06gc) is called, then yj must contain the imaginary part of the jth data value, for 0 j n-1.

Optional Input Parameters

1:     n int64int32nag_int scalar
Default: the dimension of the array y.
n, the number of data values.
Constraint: n1.

Output Parameters

1:     yn – double array
These values are negated.
2:     ifail int64int32nag_int scalar
ifail=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Errors or warnings detected by the function:
   ifail=1
On entry,n<1.
   ifail=-99
An unexpected error has been triggered by this routine. Please contact NAG.
   ifail=-399
Your licence key may have expired or may not have been installed correctly.
   ifail=-999
Dynamic memory allocation failed.

Accuracy

Exact.

Further Comments

The time taken by nag_sum_conjugate_complex_sep (c06gc) is negligible.

Example

This example reads in a sequence of complex data values and prints their inverse discrete Fourier transform as computed by calling nag_sum_conjugate_complex_sep (c06gc), followed by nag_sum_fft_complex_1d_nowork (c06ec) and nag_sum_conjugate_complex_sep (c06gc) again.
function c06gc_example


fprintf('c06gc example results\n\n');

x_r = [ 0.34907;  0.54890;  0.74776;  0.94459;  1.13850; 1.32850;  1.51370];
x_i = [-0.37168; -0.35669; -0.31175; -0.23702; -0.13274; 0.00074;  0.16298];

z = x_r + i*x_i;
disp('Complex data:');
disp(z);

[x_r, x_i, ifail] = c06ec(x_r, x_i);

z = x_r + i*x_i;
disp('Complex Fourier coeffients:');
disp(z);

[x_i, ifail] = c06gc(x_i);
[x_r, x_i, ifail] = c06ec(x_r, x_i);
[x_i, ifail] = c06gc(x_i);

z = x_r + i*x_i;
disp('Retrieved complex data:');
disp(z);


c06gc example results

Complex data:
   0.3491 - 0.3717i
   0.5489 - 0.3567i
   0.7478 - 0.3118i
   0.9446 - 0.2370i
   1.1385 - 0.1327i
   1.3285 + 0.0007i
   1.5137 + 0.1630i

Complex Fourier coeffients:
   2.4836 - 0.4710i
  -0.5518 + 0.4968i
  -0.3671 + 0.0976i
  -0.2877 - 0.0586i
  -0.2251 - 0.1748i
  -0.1483 - 0.3084i
   0.0198 - 0.5650i

Retrieved complex data:
   0.3491 - 0.3717i
   0.5489 - 0.3567i
   0.7478 - 0.3117i
   0.9446 - 0.2370i
   1.1385 - 0.1327i
   1.3285 + 0.0007i
   1.5137 + 0.1630i


PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015