hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_sum_fft_complex_1d_nowork (c06ec)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_sum_fft_complex_1d_nowork (c06ec) calculates the discrete Fourier transform of a sequence of n complex data values. (No extra workspace required.)
Note: this function is scheduled to be withdrawn, please see c06ec in Advice on Replacement Calls for Withdrawn/Superseded Routines..

Syntax

[x, y, ifail] = c06ec(x, y, 'n', n)
[x, y, ifail] = nag_sum_fft_complex_1d_nowork(x, y, 'n', n)

Description

Given a sequence of n complex data values zj, for j=0,1,,n-1, nag_sum_fft_complex_1d_nowork (c06ec) calculates their discrete Fourier transform defined by
z^k = ak + i bk = 1n j=0 n-1 zj × exp -i 2πjk n ,   k= 0, 1, , n-1 .  
(Note the scale factor of 1n  in this definition.)
To compute the inverse discrete Fourier transform defined by
w^k = 1n j=0 n-1 zj × exp +i 2πjk n ,  
this function should be preceded and followed by calls of nag_sum_conjugate_complex_sep (c06gc) to form the complex conjugates of the zj  and the z^k .
nag_sum_fft_complex_1d_nowork (c06ec) uses the fast Fourier transform (FFT) algorithm (see Brigham (1974)). There are some restrictions on the value of n (see Arguments).

References

Brigham E O (1974) The Fast Fourier Transform Prentice–Hall

Parameters

Compulsory Input Parameters

1:     xn – double array
If x is declared with bounds 0:n-1 in the function from which nag_sum_fft_complex_1d_nowork (c06ec) is called, then xj must contain xj, the real part of zj, for j=0,1,,n-1.
2:     yn – double array
If y is declared with bounds 0:n-1 in the function from which nag_sum_fft_complex_1d_nowork (c06ec) is called, then yj must contain yj, the imaginary part of zj, for j=0,1,,n-1.

Optional Input Parameters

1:     n int64int32nag_int scalar
Default: the dimension of the arrays x, y. (An error is raised if these dimensions are not equal.)
n, the number of data values. The largest prime factor of n must not exceed 19, and the total number of prime factors of n, counting repetitions, must not exceed 20.
Constraint: n>1.

Output Parameters

1:     xn – double array
The real parts ak of the components of the discrete Fourier transform. If x is declared with bounds 0:n-1 in the function from which nag_sum_fft_complex_1d_nowork (c06ec) is called, then for 0 k n-1, ak is contained in xk.
2:     yn – double array
The imaginary parts bk of the components of the discrete Fourier transform. If y is declared with bounds 0:n-1 in the function from which nag_sum_fft_complex_1d_nowork (c06ec) is called, then for 0kn-1, bk is contained in yk.
3:     ifail int64int32nag_int scalar
ifail=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Errors or warnings detected by the function:
   ifail=1
At least one of the prime factors of n is greater than 19.
   ifail=2
n has more than 20 prime factors.
   ifail=3
On entry,n1.
   ifail=4
An unexpected error has occurred in an internal call. Check all function calls and array dimensions. Seek expert help.
   ifail=-99
An unexpected error has been triggered by this routine. Please contact NAG.
   ifail=-399
Your licence key may have expired or may not have been installed correctly.
   ifail=-999
Dynamic memory allocation failed.

Accuracy

Some indication of accuracy can be obtained by performing a subsequent inverse transform and comparing the results with the original sequence (in exact arithmetic they would be identical).

Further Comments

The time taken is approximately proportional to n × logn, but also depends on the factorization of n. nag_sum_fft_complex_1d_nowork (c06ec) is faster if the only prime factors of n are 2, 3 or 5; and fastest of all if n is a power of 2.
On the other hand, nag_sum_fft_complex_1d_nowork (c06ec) is particularly slow if n has several unpaired prime factors, i.e., if the ‘square-free’ part of n has several factors. For such values of n, nag_sum_fft_complex_1d_sep (c06fc) (which requires an additional n double elements of workspace) is considerably faster.

Example

This example reads in a sequence of complex data values and prints their discrete Fourier transform. It then performs an inverse transform using nag_sum_fft_complex_1d_nowork (c06ec) and nag_sum_conjugate_complex_sep (c06gc), and prints the sequence so obtained alongside the original data values.
function c06ec_example


fprintf('c06ec example results\n\n');

x_r = [ 0.34907;  0.54890;  0.74776;  0.94459;  1.13850; 1.32850;  1.51370];
x_i = [-0.37168; -0.35669; -0.31175; -0.23702; -0.13274; 0.00074;  0.16298];

z = x_r + i*x_i;
disp('Complex data:');
disp(z);

[x_r, x_i, ifail] = c06ec(x_r, x_i);

z = x_r + i*x_i;
disp('Complex Fourier coeffients:');
disp(z);

x_i = -x_i;
[x_r, x_i, ifail] = c06ec(x_r, x_i);
x_i = -x_i;

z = x_r + i*x_i;
disp('Retrieved complex data:');
disp(z);


c06ec example results

Complex data:
   0.3491 - 0.3717i
   0.5489 - 0.3567i
   0.7478 - 0.3118i
   0.9446 - 0.2370i
   1.1385 - 0.1327i
   1.3285 + 0.0007i
   1.5137 + 0.1630i

Complex Fourier coeffients:
   2.4836 - 0.4710i
  -0.5518 + 0.4968i
  -0.3671 + 0.0976i
  -0.2877 - 0.0586i
  -0.2251 - 0.1748i
  -0.1483 - 0.3084i
   0.0198 - 0.5650i

Retrieved complex data:
   0.3491 - 0.3717i
   0.5489 - 0.3567i
   0.7478 - 0.3117i
   0.9446 - 0.2370i
   1.1385 - 0.1327i
   1.3285 + 0.0007i
   1.5137 + 0.1630i


PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015