hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_specfun_opt_binary_con_greeks (s30cb)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_specfun_opt_binary_con_greeks (s30cb) computes the price of a binary or digital cash-or-nothing option together with its sensitivities (Greeks).

Syntax

[p, delta, gamma, vega, theta, rho, crho, vanna, charm, speed, colour, zomma, vomma, ifail] = s30cb(calput, x, s, k, t, sigma, r, q, 'm', m, 'n', n)
[p, delta, gamma, vega, theta, rho, crho, vanna, charm, speed, colour, zomma, vomma, ifail] = nag_specfun_opt_binary_con_greeks(calput, x, s, k, t, sigma, r, q, 'm', m, 'n', n)

Description

nag_specfun_opt_binary_con_greeks (s30cb) computes the price of a binary or digital cash-or-nothing option, together with the Greeks or sensitivities, which are the partial derivatives of the option price with respect to certain of the other input parameters. This option pays a fixed amount, K, at expiration if the option is in-the-money (see Option Pricing Routines in the S Chapter Introduction). For a strike price, X, underlying asset price, S, and time to expiry, T, the payoff is therefore K, if S>X for a call or S<X for a put. Nothing is paid out when this condition is not met.
The price of a call with volatility, σ, risk-free interest rate, r, and annualised dividend yield, q, is
Pcall = K e-rT Φd2  
and for a put,
Pput = K e-rT Φ-d2  
where Φ is the cumulative Normal distribution function,
Φx = 1 2π - x exp -y2/2 dy ,  
and
d2 = ln S/X + r-q- σ2 / 2 T σT .  
The option price Pij=PX=Xi,T=Tj is computed for each strike price in a set Xi, i=1,2,,m, and for each expiry time in a set Tj, j=1,2,,n.

References

Reiner E and Rubinstein M (1991) Unscrambling the binary code Risk 4

Parameters

Compulsory Input Parameters

1:     calput – string (length ≥ 1)
Determines whether the option is a call or a put.
calput='C'
A call; the holder has a right to buy.
calput='P'
A put; the holder has a right to sell.
Constraint: calput='C' or 'P'.
2:     xm – double array
xi must contain Xi, the ith strike price, for i=1,2,,m.
Constraint: xiz ​ and ​ xi 1 / z , where z = x02am , the safe range parameter, for i=1,2,,m.
3:     s – double scalar
S, the price of the underlying asset.
Constraint: sz ​ and ​s1.0/z, where z=x02am, the safe range parameter.
4:     k – double scalar
The amount, K, to be paid at expiration if the option is in-the-money, i.e., if s>xi when calput='C', or if s<xi when calput='P', for i=1,2,,m.
Constraint: k0.0.
5:     tn – double array
ti must contain Ti, the ith time, in years, to expiry, for i=1,2,,n.
Constraint: tiz, where z = x02am , the safe range parameter, for i=1,2,,n.
6:     sigma – double scalar
σ, the volatility of the underlying asset. Note that a rate of 15% should be entered as 0.15.
Constraint: sigma>0.0.
7:     r – double scalar
r, the annual risk-free interest rate, continuously compounded. Note that a rate of 5% should be entered as 0.05.
Constraint: r0.0.
8:     q – double scalar
q, the annual continuous yield rate. Note that a rate of 8% should be entered as 0.08.
Constraint: q0.0.

Optional Input Parameters

1:     m int64int32nag_int scalar
Default: the dimension of the array x.
The number of strike prices to be used.
Constraint: m1.
2:     n int64int32nag_int scalar
Default: the dimension of the array t.
The number of times to expiry to be used.
Constraint: n1.

Output Parameters

1:     pldpn – double array
ldp=m.
pij contains Pij, the option price evaluated for the strike price xi at expiry tj for i=1,2,,m and j=1,2,,n.
2:     deltaldpn – double array
ldp=m.
The leading m×n part of the array delta contains the sensitivity, PS, of the option price to change in the price of the underlying asset.
3:     gammaldpn – double array
ldp=m.
The leading m×n part of the array gamma contains the sensitivity, 2PS2, of delta to change in the price of the underlying asset.
4:     vegaldpn – double array
ldp=m.
vegaij, contains the first-order Greek measuring the sensitivity of the option price Pij to change in the volatility of the underlying asset, i.e., Pij σ , for i=1,2,,m and j=1,2,,n.
5:     thetaldpn – double array
ldp=m.
thetaij, contains the first-order Greek measuring the sensitivity of the option price Pij to change in time, i.e., - Pij T , for i=1,2,,m and j=1,2,,n, where b=r-q.
6:     rholdpn – double array
ldp=m.
rhoij, contains the first-order Greek measuring the sensitivity of the option price Pij to change in the annual risk-free interest rate, i.e., - Pij r , for i=1,2,,m and j=1,2,,n.
7:     crholdpn – double array
ldp=m.
crhoij, contains the first-order Greek measuring the sensitivity of the option price Pij to change in the annual cost of carry rate, i.e., - Pij b , for i=1,2,,m and j=1,2,,n, where b=r-q.
8:     vannaldpn – double array
ldp=m.
vannaij, contains the second-order Greek measuring the sensitivity of the first-order Greek Δij to change in the volatility of the asset price, i.e., - Δij T = - 2 Pij Sσ , for i=1,2,,m and j=1,2,,n.
9:     charmldpn – double array
ldp=m.
charmij, contains the second-order Greek measuring the sensitivity of the first-order Greek Δij to change in the time, i.e., - Δij T = - 2 Pij ST , for i=1,2,,m and j=1,2,,n.
10:   speedldpn – double array
ldp=m.
speedij, contains the third-order Greek measuring the sensitivity of the second-order Greek Γij to change in the price of the underlying asset, i.e., - Γij S = - 3 Pij S3 , for i=1,2,,m and j=1,2,,n.
11:   colourldpn – double array
ldp=m.
colourij, contains the third-order Greek measuring the sensitivity of the second-order Greek Γij to change in the time, i.e., - Γij T = - 3 Pij ST , for i=1,2,,m and j=1,2,,n.
12:   zommaldpn – double array
ldp=m.
zommaij, contains the third-order Greek measuring the sensitivity of the second-order Greek Γij to change in the volatility of the underlying asset, i.e., - Γij σ = - 3 Pij S2σ , for i=1,2,,m and j=1,2,,n.
13:   vommaldpn – double array
ldp=m.
vommaij, contains the second-order Greek measuring the sensitivity of the first-order Greek Δij to change in the volatility of the underlying asset, i.e., - Δij σ = - 2 Pij σ2 , for i=1,2,,m and j=1,2,,n.
14:   ifail int64int32nag_int scalar
ifail=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Errors or warnings detected by the function:
   ifail=1
On entry, calput=_ was an illegal value.
   ifail=2
Constraint: m1.
   ifail=3
Constraint: n1.
   ifail=4
Constraint: xi_ and xi_.
   ifail=5
Constraint: s_ and s_.
   ifail=6
Constraint: k0.0.
   ifail=7
Constraint: ti_.
   ifail=8
Constraint: sigma>0.0.
   ifail=9
Constraint: r0.0.
   ifail=10
Constraint: q0.0.
   ifail=12
Constraint: ldpm.
   ifail=-99
An unexpected error has been triggered by this routine. Please contact NAG.
   ifail=-399
Your licence key may have expired or may not have been installed correctly.
   ifail=-999
Dynamic memory allocation failed.

Accuracy

The accuracy of the output is dependent on the accuracy of the cumulative Normal distribution function, Φ. This is evaluated using a rational Chebyshev expansion, chosen so that the maximum relative error in the expansion is of the order of the machine precision (see nag_specfun_cdf_normal (s15ab) and nag_specfun_erfc_real (s15ad)). An accuracy close to machine precision can generally be expected.

Further Comments

None.

Example

This example computes the price of a cash-or-nothing call with a time to expiry of 0.75 years, a stock price of 110 and a strike price of 87. The risk-free interest rate is 5% per year, there is an annual dividend return of 4% and the volatility is 35% per year. If the option is in-the-money at expiration, i.e., if S>X, the payoff is 5.
function s30cb_example


fprintf('s30cb example results\n\n');

put = 'C';
s = 110.0;
k = 5.0;
sigma = 0.35;
r = 0.05;
q = 0.04;
x = [87.0];
t = [0.75];

[p, delta, gamma,  vega, theta,    rho,  crho, ...
    vanna, charm, speed, colour, zomma, vomma, ifail] = ...
    s30cb(...
          put, x, s, k, t, sigma, r, q);

fprintf('\nBinary (Digital): Cash-or-Nothing\n European Call :\n');
fprintf('  Spot       =   %9.4f\n', s);
fprintf('  Payout     =   %9.4f\n', k);
fprintf('  Volatility =   %9.4f\n', sigma);
fprintf('  Rate       =   %9.4f\n', r);
fprintf('  Dividend   =   %9.4f\n\n', q);

fprintf(' Time to Expiry : %8.4f\n', t(1));
fprintf('%8s%9s%9s%9s%9s%9s%9s%9s\n','Strike','Price','Delta','Gamma',...
        'Vega','Theta','Rho','CRho');
fprintf('%8.4f%9.4f%9.4f%9.4f%9.4f%9.4f%9.4f%9.4f\n\n', x(1), p(1,1), ...
        delta(1,1), gamma(1,1), vega(1,1), theta(1,1), rho(1,1), crho(1,1));

fprintf('%26s%9s%9s%9s%9s%9s\n','Vanna','Charm','Speed','Colour',...
        'Zomma','Vomma');
fprintf('%17s%9.4f%9.4f%9.4f%9.4f%9.4f%9.4f\n\n', ' ', vanna(1,1), ...
        charm(1,1), speed(1,1), colour(1,1), zomma(1,1), vomma(1,1));


s30cb example results


Binary (Digital): Cash-or-Nothing
 European Call :
  Spot       =    110.0000
  Payout     =      5.0000
  Volatility =      0.3500
  Rate       =      0.0500
  Dividend   =      0.0400

 Time to Expiry :   0.7500
  Strike    Price    Delta    Gamma     Vega    Theta      Rho     CRho
 87.0000   3.5696   0.0467  -0.0013  -4.2307   1.1142   1.1788   3.8560

                     Vanna    Charm    Speed   Colour    Zomma    Vomma
                   -0.0514   0.0153   0.0000  -0.0019   0.0079  12.8874


PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015