hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_specfun_opt_bsm_greeks (s30ab)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_specfun_opt_bsm_greeks (s30ab) computes the European option price given by the Black–Scholes–Merton formula together with its sensitivities (Greeks).

Syntax

[p, delta, gamma, vega, theta, rho, crho, vanna, charm, speed, colour, zomma, vomma, ifail] = s30ab(calput, x, s, t, sigma, r, q, 'm', m, 'n', n)
[p, delta, gamma, vega, theta, rho, crho, vanna, charm, speed, colour, zomma, vomma, ifail] = nag_specfun_opt_bsm_greeks(calput, x, s, t, sigma, r, q, 'm', m, 'n', n)

Description

nag_specfun_opt_bsm_greeks (s30ab) computes the price of a European call (or put) option together with the Greeks or sensitivities, which are the partial derivatives of the option price with respect to certain of the other input parameters, by the Black–Scholes–Merton formula (see Black and Scholes (1973) and Merton (1973)). The annual volatility, σ, risk-free interest rate, r, and dividend yield, q, must be supplied as input. For a given strike price, X, the price of a European call with underlying price, S, and time to expiry, T, is
Pcall = Se-qT Φd1 - Xe-rT Φd2  
and the corresponding European put price is
Pput = Xe-rT Φ-d2 - Se-qT Φ-d1  
and where Φ denotes the cumulative Normal distribution function,
Φx = 12π - x exp -y2/2 dy  
and
d1 = ln S/X + r-q+ σ2 / 2 T σT , d2 = d1 - σT .  
The option price Pij=PX=Xi,T=Tj is computed for each strike price in a set Xi, i=1,2,,m, and for each expiry time in a set Tj, j=1,2,,n.

References

Black F and Scholes M (1973) The pricing of options and corporate liabilities Journal of Political Economy 81 637–654
Merton R C (1973) Theory of rational option pricing Bell Journal of Economics and Management Science 4 141–183

Parameters

Compulsory Input Parameters

1:     calput – string (length ≥ 1)
Determines whether the option is a call or a put.
calput='C'
A call; the holder has a right to buy.
calput='P'
A put; the holder has a right to sell.
Constraint: calput='C' or 'P'.
2:     xm – double array
xi must contain Xi, the ith strike price, for i=1,2,,m.
Constraint: xiz ​ and ​ xi 1 / z , where z = x02am , the safe range parameter, for i=1,2,,m.
3:     s – double scalar
S, the price of the underlying asset.
Constraint: sz ​ and ​s1.0/z, where z=x02am, the safe range parameter.
4:     tn – double array
ti must contain Ti, the ith time, in years, to expiry, for i=1,2,,n.
Constraint: tiz, where z = x02am , the safe range parameter, for i=1,2,,n.
5:     sigma – double scalar
σ, the volatility of the underlying asset. Note that a rate of 15% should be entered as 0.15.
Constraint: sigma>0.0.
6:     r – double scalar
r, the annual risk-free interest rate, continuously compounded. Note that a rate of 5% should be entered as 0.05.
Constraint: r0.0.
7:     q – double scalar
q, the annual continuous yield rate. Note that a rate of 8% should be entered as 0.08.
Constraint: q0.0.

Optional Input Parameters

1:     m int64int32nag_int scalar
Default: the dimension of the array x.
The number of strike prices to be used.
Constraint: m1.
2:     n int64int32nag_int scalar
Default: the dimension of the array t.
The number of times to expiry to be used.
Constraint: n1.

Output Parameters

1:     pldpn – double array
ldp=m.
pij contains Pij, the option price evaluated for the strike price xi at expiry tj for i=1,2,,m and j=1,2,,n.
2:     deltaldpn – double array
ldp=m.
The leading m×n part of the array delta contains the sensitivity, PS, of the option price to change in the price of the underlying asset.
3:     gammaldpn – double array
ldp=m.
The leading m×n part of the array gamma contains the sensitivity, 2PS2, of delta to change in the price of the underlying asset.
4:     vegaldpn – double array
ldp=m.
vegaij, contains the first-order Greek measuring the sensitivity of the option price Pij to change in the volatility of the underlying asset, i.e., Pij σ , for i=1,2,,m and j=1,2,,n.
5:     thetaldpn – double array
ldp=m.
thetaij, contains the first-order Greek measuring the sensitivity of the option price Pij to change in time, i.e., - Pij T , for i=1,2,,m and j=1,2,,n, where b=r-q.
6:     rholdpn – double array
ldp=m.
rhoij, contains the first-order Greek measuring the sensitivity of the option price Pij to change in the annual risk-free interest rate, i.e., - Pij r , for i=1,2,,m and j=1,2,,n.
7:     crholdpn – double array
ldp=m.
crhoij, contains the first-order Greek measuring the sensitivity of the option price Pij to change in the annual cost of carry rate, i.e., - Pij b , for i=1,2,,m and j=1,2,,n, where b=r-q.
8:     vannaldpn – double array
ldp=m.
vannaij, contains the second-order Greek measuring the sensitivity of the first-order Greek Δij to change in the volatility of the asset price, i.e., - Δij T = - 2 Pij Sσ , for i=1,2,,m and j=1,2,,n.
9:     charmldpn – double array
ldp=m.
charmij, contains the second-order Greek measuring the sensitivity of the first-order Greek Δij to change in the time, i.e., - Δij T = - 2 Pij ST , for i=1,2,,m and j=1,2,,n.
10:   speedldpn – double array
ldp=m.
speedij, contains the third-order Greek measuring the sensitivity of the second-order Greek Γij to change in the price of the underlying asset, i.e., - Γij S = - 3 Pij S3 , for i=1,2,,m and j=1,2,,n.
11:   colourldpn – double array
ldp=m.
colourij, contains the third-order Greek measuring the sensitivity of the second-order Greek Γij to change in the time, i.e., - Γij T = - 3 Pij ST , for i=1,2,,m and j=1,2,,n.
12:   zommaldpn – double array
ldp=m.
zommaij, contains the third-order Greek measuring the sensitivity of the second-order Greek Γij to change in the volatility of the underlying asset, i.e., - Γij σ = - 3 Pij S2σ , for i=1,2,,m and j=1,2,,n.
13:   vommaldpn – double array
ldp=m.
vommaij, contains the second-order Greek measuring the sensitivity of the first-order Greek Δij to change in the volatility of the underlying asset, i.e., - Δij σ = - 2 Pij σ2 , for i=1,2,,m and j=1,2,,n.
14:   ifail int64int32nag_int scalar
ifail=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Errors or warnings detected by the function:
   ifail=1
On entry, calput=_ was an illegal value.
   ifail=2
Constraint: m1.
   ifail=3
Constraint: n1.
   ifail=4
Constraint: xi_ and xi_.
   ifail=5
Constraint: s_ and s_.
   ifail=6
Constraint: ti_.
   ifail=7
Constraint: sigma>0.0.
   ifail=8
Constraint: r0.0.
   ifail=9
Constraint: q0.0.
   ifail=11
Constraint: ldpm.
   ifail=-99
An unexpected error has been triggered by this routine. Please contact NAG.
   ifail=-399
Your licence key may have expired or may not have been installed correctly.
   ifail=-999
Dynamic memory allocation failed.

Accuracy

The accuracy of the output is dependent on the accuracy of the cumulative Normal distribution function, Φ. This is evaluated using a rational Chebyshev expansion, chosen so that the maximum relative error in the expansion is of the order of the machine precision (see nag_specfun_cdf_normal (s15ab) and nag_specfun_erfc_real (s15ad)). An accuracy close to machine precision can generally be expected.

Further Comments

None.

Example

This example computes the price of a European put with a time to expiry of 0.7 years, a stock price of 55 and a strike price of 60. The risk-free interest rate is 10% per year and the volatility is 30% per year.
function s30ab_example


fprintf('s30ab example results\n\n');

put   = 'p';
s     = 55;
sigma = 0.3;
r     = 0.1;
q     = 0;
x     = [60];
t     = [0.7];

[p, delta, gamma, vega, theta, rho, crho, vanna, charm, speed, colour, ...
  zomma, vomma, ifail] = s30ab( ...
                                put, x, s, t, sigma, r, q);


fprintf('\nBlack-Scholes-Merton formula\n European Call :\n');
fprintf('  Spot       =   %9.4f\n', s);
fprintf('  Volatility =   %9.4f\n', sigma);
fprintf('  Rate       =   %9.4f\n', r);
fprintf('  Dividend   =   %9.4f\n\n', q);

fprintf(' Time to Expiry : %8.4f\n', t(1));
fprintf('%8s%9s%9s%9s%9s%9s%9s%9s\n','Strike','Price','Delta','Gamma',...
        'Vega','Theta','Rho','CRho');
fprintf('%8.4f%9.4f%9.4f%9.4f%9.4f%9.4f%9.4f%9.4f\n\n', x(1), p(1,1), ...
        delta(1,1), gamma(1,1), vega(1,1), theta(1,1), rho(1,1), crho(1,1));

fprintf('%26s%9s%9s%9s%9s%9s\n','Vanna','Charm','Speed','Colour',...
        'Zomma','Vomma');
fprintf('%17s%9.4f%9.4f%9.4f%9.4f%9.4f%9.4f\n\n', ' ', vanna(1,1), ...
        charm(1,1), speed(1,1), colour(1,1), zomma(1,1), vomma(1,1));


s30ab example results


Black-Scholes-Merton formula
 European Call :
  Spot       =     55.0000
  Volatility =      0.3000
  Rate       =      0.1000
  Dividend   =      0.0000

 Time to Expiry :   0.7000
  Strike    Price    Delta    Gamma     Vega    Theta      Rho     CRho
 60.0000   6.0245  -0.4770   0.0289  18.3273  -0.7014 -22.5811 -18.3639

                     Vanna    Charm    Speed   Colour    Zomma    Vomma
                    0.2566  -0.2137  -0.0006   0.0215  -0.0972  -0.6816


PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015