hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_lapack_ztftri (f07wx)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_lapack_ztftri (f07wx) computes the inverse of a complex triangular matrix stored in Rectangular Full Packed (RFP) format.

Syntax

[ar, info] = f07wx(transr, uplo, diag, n, ar)
[ar, info] = nag_lapack_ztftri(transr, uplo, diag, n, ar)

Description

nag_lapack_ztftri (f07wx) forms the inverse of a complex triangular matrix A, stored using RFP format. The RFP storage format is described in Rectangular Full Packed (RFP) Storage in the F07 Chapter Introduction. Note that the inverse of an upper (lower) triangular matrix is also upper (lower) triangular.

References

Du Croz J J and Higham N J (1992) Stability of methods for matrix inversion IMA J. Numer. Anal. 12 1–19
Gustavson F G, Waśniewski J, Dongarra J J and Langou J (2010) Rectangular full packed format for Cholesky's algorithm: factorization, solution, and inversion ACM Trans. Math. Software 37, 2

Parameters

Compulsory Input Parameters

1:     transr – string (length ≥ 1)
Specifies whether the normal RFP representation of A or its conjugate transpose is stored.
transr='N'
The matrix A is stored in normal RFP format.
transr='C'
The conjugate transpose of the RFP representation of the matrix A is stored.
Constraint: transr='N' or 'C'.
2:     uplo – string (length ≥ 1)
Specifies whether A is upper or lower triangular.
uplo='U'
A is upper triangular.
uplo='L'
A is lower triangular.
Constraint: uplo='U' or 'L'.
3:     diag – string (length ≥ 1)
Indicates whether A is a nonunit or unit triangular matrix.
diag='N'
A is a nonunit triangular matrix.
diag='U'
A is a unit triangular matrix; the diagonal elements are not referenced and are assumed to be 1.
Constraint: diag='N' or 'U'.
4:     n int64int32nag_int scalar
n, the order of the matrix A.
Constraint: n0.
5:     arn×n+1/2 – complex array
The upper or lower triangular part (as specified by uplo) of the n by n Hermitian matrix A, in either normal or transposed RFP format (as specified by transr). The storage format is described in detail in Rectangular Full Packed (RFP) Storage in the F07 Chapter Introduction.

Optional Input Parameters

None.

Output Parameters

1:     arn×n+1/2 – complex array
A stores A-1, in the same storage format as A.
2:     info int64int32nag_int scalar
info=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Cases prefixed with W are classified as warnings and do not generate an error of type NAG:error_n. See nag_issue_warnings.

   info<0
If info=-i, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.
W  info>0
Diagonal element _ of A is exactly zero. A is singular its inverse cannot be computed.

Accuracy

The computed inverse X satisfies
XA-IcnεXA ,  
where cn is a modest linear function of n, and ε is the machine precision.
Note that a similar bound for AX-I cannot be guaranteed, although it is almost always satisfied.
The computed inverse satisfies the forward error bound
X-A-1cnεA-1AX .  
See Du Croz and Higham (1992).

Further Comments

The total number of real floating-point operations is approximately 43n3.
The real analogue of this function is nag_lapack_dtftri (f07wk).

Example

This example computes the inverse of the matrix A, where
A= 4.78+4.56i 0.00+0.00i 0.00+0.00i 0.00+0.00i 2.00-0.30i -4.11+1.25i 0.00+0.00i 0.00+0.00i 2.89-1.34i 2.36-4.25i 4.15+0.80i 0.00+0.00i -1.89+1.15i 0.04-3.69i -0.02+0.46i 0.33-0.26i  
and is stored using RFP format.
function f07wx_example


fprintf('f07wx example results\n\n');

% Symmetric matrix in RFP format
transr = 'n';
uplo   = 'l';
diag   = 'n';
ar = [ 4.15 - 0.80i  -0.02 - 0.46i; 
       4.78 + 4.56i   0.33 + 0.26i; 
       2.00 - 0.30i  -4.11 + 1.25i; 
       2.89 - 1.34i   2.36 - 4.25i; 
      -1.89 + 1.15i   0.04 - 3.69i];
n  = int64(4);
n2 = (n*(n+1))/2;
ar  = reshape(ar,[n2,1]);
   
% Compute inverse of a
[ar, info] = f07wx( ...
                    transr, uplo, diag, n, ar);

if info == 0
  % Convert inverse to full array form for display
  [a, info] = f01vh( ...
                     transr, uplo, n, ar);
  fprintf('\n');
  ncols  = int64(80);
  indent = int64(0);
  form   = 'f7.4';
  title  = 'Inverse, lower triangle:';
  diag   = 'n';
  [ifail] = x04db( ...
                   uplo, diag, a, 'brackets', form, title, ...
                  'int', 'int', ncols, indent);
else
  fprintf('\na is singular.\n');
end


f07wx example results


 Inverse, lower triangle:
                    1                 2                 3                 4
 1  ( 0.1095,-0.1045)
 2  ( 0.0582,-0.0411) (-0.2227,-0.0677)
 3  ( 0.0032, 0.1905) ( 0.1538,-0.2192) ( 0.2323,-0.0448)
 4  ( 0.7602, 0.2814) ( 1.6184,-1.4346) ( 0.1289,-0.2250) ( 1.8697, 1.4731)

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015