hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_lapack_zpftrf (f07wr)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_lapack_zpftrf (f07wr) computes the Cholesky factorization of a complex Hermitian positive definite matrix stored in Rectangular Full Packed (RFP) format.

Syntax

[ar, info] = f07wr(transr, uplo, n, ar)
[ar, info] = nag_lapack_zpftrf(transr, uplo, n, ar)

Description

nag_lapack_zpftrf (f07wr) forms the Cholesky factorization of a complex Hermitian positive definite matrix A either as A=UHU if uplo='U' or A=LLH if uplo='L', where U is an upper triangular matrix and L is a lower triangular, stored in RFP format. The RFP storage format is described in Rectangular Full Packed (RFP) Storage in the F07 Chapter Introduction.

References

Demmel J W (1989) On floating-point errors in Cholesky LAPACK Working Note No. 14 University of Tennessee, Knoxville http://www.netlib.org/lapack/lawnspdf/lawn14.pdf
Gustavson F G, Waśniewski J, Dongarra J J and Langou J (2010) Rectangular full packed format for Cholesky's algorithm: factorization, solution, and inversion ACM Trans. Math. Software 37, 2

Parameters

Compulsory Input Parameters

1:     transr – string (length ≥ 1)
Specifies whether the normal RFP representation of A or its conjugate transpose is stored.
transr='N'
The matrix A is stored in normal RFP format.
transr='C'
The conjugate transpose of the RFP representation of the matrix A is stored.
Constraint: transr='N' or 'C'.
2:     uplo – string (length ≥ 1)
Specifies whether the upper or lower triangular part of A is stored.
uplo='U'
The upper triangular part of A is stored, and A is factorized as UHU, where U is upper triangular.
uplo='L'
The lower triangular part of A is stored, and A is factorized as LLH, where L is lower triangular.
Constraint: uplo='U' or 'L'.
3:     n int64int32nag_int scalar
n, the order of the matrix A.
Constraint: n0.
4:     arn×n+1/2 – complex array
The upper or lower triangular part (as specified by uplo) of the n by n Hermitian matrix A, in either normal or transposed RFP format (as specified by transr). The storage format is described in detail in Rectangular Full Packed (RFP) Storage in the F07 Chapter Introduction.

Optional Input Parameters

None.

Output Parameters

1:     arn×n+1/2 – complex array
If info=0, the factor U or L from the Cholesky factorization A=UHU or A=LLH, in the same storage format as A.
2:     info int64int32nag_int scalar
info=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

   info<0
If info=-i, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.
   info>0
The leading minor of order _ is not positive definite and the factorization could not be completed. Hence A itself is not positive definite. This may indicate an error in forming the matrix A. There is no function specifically designed to factorize a Hermitian matrix stored in RFP format which is not positive definite; the matrix must be treated as a full Hermitian matrix, by calling nag_lapack_zhetrf (f07mr).

Accuracy

If uplo='U', the computed factor U is the exact factor of a perturbed matrix A+E, where
EcnεUHU ,  
cn is a modest linear function of n, and ε is the machine precision.
If uplo='L', a similar statement holds for the computed factor L. It follows that eijcnεaiiajj.

Further Comments

The total number of real floating-point operations is approximately 43n3.
A call to nag_lapack_zpftrf (f07wr) may be followed by calls to the functions:
The real analogue of this function is nag_lapack_dpftrf (f07wd).

Example

This example computes the Cholesky factorization of the matrix A, where
A= 3.23+0.00i 1.51-1.92i 1.90+0.84i 0.42+2.50i 1.51+1.92i 3.58+0.00i -0.23+1.11i -1.18+1.37i 1.90-0.84i -0.23-1.11i 4.09+0.00i 2.33-0.14i 0.42-2.50i -1.18-1.37i 2.33+0.14i 4.29+0.00i .  
and is stored using RFP format.
function f07wr_example


fprintf('f07wr example results\n\n');

% Symmetric matrix in RFP format
transr = 'n';
uplo   = 'l';
ar = [ 4.09 + 0.00i  2.33 + 0.14i;
       3.23 + 0.00i  4.29 + 0.00i;
       1.51 + 1.92i  3.58 + 0.00i;
       1.90 - 0.84i -0.23 - 1.11i;
       0.42 - 2.50i -1.18 - 1.37i];
n  = int64(4);
n2 = (n*(n+1))/2;
ar  = reshape(ar,[n2,1]);

% Factorize a
[ar, info] = f07wr(transr, uplo, n, ar);

if info == 0
  % Convert factor to full array form for display
  [a, info] = f01vh(transr, uplo, n, ar);
  fprintf('\n');
  ncols  = int64(80);
  indent = int64(0);
  form   = 'f7.4';
  title  = 'Factor L:';
  diag   = 'n';
  [ifail] = x04db( ...
                   uplo, diag, a, 'brackets', form, title, ...
                   'int', 'int', ncols, indent);
else
  fprintf('\na is not positive definite.\n');
end


f07wr example results


 Factor L:
                    1                 2                 3                 4
 1  ( 1.7972, 0.0000)
 2  ( 0.8402, 1.0683) ( 1.3164, 0.0000)
 3  ( 1.0572,-0.4674) (-0.4702, 0.3131) ( 1.5604,-0.0000)
 4  ( 0.2337,-1.3910) ( 0.0834, 0.0368) ( 0.9360, 0.8105) ( 0.8713,-0.0000)

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015