hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_lapack_dtftri (f07wk)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_lapack_dtftri (f07wk) computes the inverse of a real triangular matrix stored in Rectangular Full Packed (RFP) format.

Syntax

[ar, info] = f07wk(transr, uplo, diag, n, ar)
[ar, info] = nag_lapack_dtftri(transr, uplo, diag, n, ar)

Description

nag_lapack_dtftri (f07wk) forms the inverse of a real triangular matrix A, stored using RFP format. The RFP storage format is described in Rectangular Full Packed (RFP) Storage in the F07 Chapter Introduction. Note that the inverse of an upper (lower) triangular matrix is also upper (lower) triangular.

References

Du Croz J J and Higham N J (1992) Stability of methods for matrix inversion IMA J. Numer. Anal. 12 1–19
Gustavson F G, Waśniewski J, Dongarra J J and Langou J (2010) Rectangular full packed format for Cholesky's algorithm: factorization, solution, and inversion ACM Trans. Math. Software 37, 2

Parameters

Compulsory Input Parameters

1:     transr – string (length ≥ 1)
Specifies whether the RFP representation of A is normal or transposed.
transr='N'
The matrix A is stored in normal RFP format.
transr='T'
The matrix A is stored in transposed RFP format.
Constraint: transr='N' or 'T'.
2:     uplo – string (length ≥ 1)
Specifies whether A is upper or lower triangular.
uplo='U'
A is upper triangular.
uplo='L'
A is lower triangular.
Constraint: uplo='U' or 'L'.
3:     diag – string (length ≥ 1)
Indicates whether A is a nonunit or unit triangular matrix.
diag='N'
A is a nonunit triangular matrix.
diag='U'
A is a unit triangular matrix; the diagonal elements are not referenced and are assumed to be 1.
Constraint: diag='N' or 'U'.
4:     n int64int32nag_int scalar
n, the order of the matrix A.
Constraint: n0.
5:     arn×n+1/2 – double array
The upper or lower triangular part (as specified by uplo) of the n by n symmetric matrix A, in either normal or transposed RFP format (as specified by transr). The storage format is described in detail in Rectangular Full Packed (RFP) Storage in the F07 Chapter Introduction.

Optional Input Parameters

None.

Output Parameters

1:     arn×n+1/2 – double array
A stores A-1, in the same storage format as A.
2:     info int64int32nag_int scalar
info=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Cases prefixed with W are classified as warnings and do not generate an error of type NAG:error_n. See nag_issue_warnings.

   info<0
If info=-i, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.
W  info>0
Diagonal element _ of A is exactly zero. A is singular its inverse cannot be computed.

Accuracy

The computed inverse X satisfies
XA-IcnεXA ,  
where cn is a modest linear function of n, and ε is the machine precision.
Note that a similar bound for AX-I cannot be guaranteed, although it is almost always satisfied.
The computed inverse satisfies the forward error bound
X-A-1cnεA-1AX .  
See Du Croz and Higham (1992).

Further Comments

The total number of floating-point operations is approximately 13n3.
The complex analogue of this function is nag_lapack_ztftri (f07wx).

Example

This example computes the inverse of the matrix A, where
A= 4.30 0.00 0.00 0.00 -3.96 -4.87 0.00 0.00 0.40 0.31 -8.02 0.00 -0.27 0.07 -5.95 0.12  
and is stored using RFP format.
function f07wk_example


fprintf('f07wk example results\n\n');

% Symmetric matrix in RFP format
transr = 'n';
uplo   = 'l';
diag   = 'n';
ar = [-8.02  -5.95;
       4.30   0.12;
      -3.96  -4.87;
       0.40   0.31;
      -0.27   0.07];
n  = int64(4);
n2 = (n*(n+1))/2;
ar  = reshape(ar,[n2,1]);

% Compute inverse of a
[ar, info] = f07wk( ...
                    transr, uplo, diag, n, ar);

if info == 0
  % Convert inverse to full array form, and print it
  [a, info] = f01vg(transr, uplo, n, ar);
  fprintf('\n');
  [ifail] = x04ca(uplo, 'n', a, 'Inverse');
else
  fprintf('\na is singular.\n');
end


f07wk example results


 Inverse
             1          2          3          4
 1      0.2326
 2     -0.1891    -0.2053
 3      0.0043    -0.0079    -0.1247
 4      0.8463    -0.2738    -6.1825     8.3333

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015