hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_lapack_dpftri (f07wj)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_lapack_dpftri (f07wj) computes the inverse of a real symmetric positive definite matrix using the Cholesky factorization computed by nag_lapack_dpftrf (f07wd) stored in Rectangular Full Packed (RFP) format.

Syntax

[ar, info] = f07wj(transr, uplo, n, ar)
[ar, info] = nag_lapack_dpftri(transr, uplo, n, ar)

Description

nag_lapack_dpftri (f07wj) is used to compute the inverse of a real symmetric positive definite matrix A, stored in RFP format. The RFP storage format is described in Rectangular Full Packed (RFP) Storage in the F07 Chapter Introduction. The function must be preceded by a call to nag_lapack_dpftrf (f07wd), which computes the Cholesky factorization of A.
If uplo='U', A=UTU and A-1 is computed by first inverting U and then forming U-1U-T.
If uplo='L', A=LLT and A-1 is computed by first inverting L and then forming L-TL-1.

References

Du Croz J J and Higham N J (1992) Stability of methods for matrix inversion IMA J. Numer. Anal. 12 1–19
Gustavson F G, Waśniewski J, Dongarra J J and Langou J (2010) Rectangular full packed format for Cholesky's algorithm: factorization, solution, and inversion ACM Trans. Math. Software 37, 2

Parameters

Compulsory Input Parameters

1:     transr – string (length ≥ 1)
Specifies whether the RFP representation of A is normal or transposed.
transr='N'
The matrix A is stored in normal RFP format.
transr='T'
The matrix A is stored in transposed RFP format.
Constraint: transr='N' or 'T'.
2:     uplo – string (length ≥ 1)
Specifies how A has been factorized.
uplo='U'
A=UTU, where U is upper triangular.
uplo='L'
A=LLT, where L is lower triangular.
Constraint: uplo='U' or 'L'.
3:     n int64int32nag_int scalar
n, the order of the matrix A.
Constraint: n0.
4:     arn×n+1/2 – double array
The Cholesky factorization of A stored in RFP format, as returned by nag_lapack_dpftrf (f07wd).

Optional Input Parameters

None.

Output Parameters

1:     arn×n+1/2 – double array
The factorization stores the n by n matrix A-1 stored in RFP format.
2:     info int64int32nag_int scalar
info=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Cases prefixed with W are classified as warnings and do not generate an error of type NAG:error_n. See nag_issue_warnings.

   info<0
If info=-i, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.
W  info>0
The leading minor of order _ is not positive definite and the factorization could not be completed. Hence A itself is not positive definite. This may indicate an error in forming the matrix A. There is no function specifically designed to invert a symmetric matrix stored in RFP format which is not positive definite; the matrix must be treated as a full symmetric matrix, by calling nag_lapack_dsytri (f07mj).

Accuracy

The computed inverse X satisfies
XA-I2cnεκ2A   and   AX-I2cnεκ2A ,  
where cn is a modest function of n, ε is the machine precision and κ2A is the condition number of A defined by
κ2A=A2A-12 .  

Further Comments

The total number of floating-point operations is approximately 23n3.
The complex analogue of this function is nag_lapack_zpftri (f07ww).

Example

This example computes the inverse of the matrix A, where
A= 4.16 -3.12 0.56 -0.10 -3.12 5.03 -0.83 1.18 0.56 -0.83 0.76 0.34 -0.10 1.18 0.34 1.18 .  
Here A is symmetric positive definite, stored in RFP format, and must first be factorized by nag_lapack_dpftrf (f07wd).
function f07wj_example


fprintf('f07wj example results\n\n');

% Symmetric matrix in RFP format
transr = 'n';
uplo   = 'l';
ar = [ 0.76   0.34; 
       4.16   1.18;
      -3.12   5.03;
       0.56  -0.83;
      -0.10   1.18];
n  = int64(4);
n2 = (n*(n+1))/2;
ar  = reshape(ar,[n2,1]);

% Factorize a
[ar, info] = f07wd(transr, uplo, n, ar);

if info == 0
  % Compute inverse of a
  [ar, info] = f07wj(transr, uplo, n, ar);
  % Convert inverse to full array form, and print it
  [a, info] = f01vg(transr, uplo, n, ar);
  fprintf('\n');
  [ifail] = x04ca(uplo, 'n', a, 'Inverse');
else
  fprintf('\na is not positive definite.\n');
end


f07wj example results


 Inverse
             1          2          3          4
 1      0.6995
 2      0.7769     1.4239
 3      0.7508     1.8255     4.0688
 4     -0.9340    -1.8841    -2.9342     3.4978

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015