hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_lapack_zsyrfs (f07nv)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_lapack_zsyrfs (f07nv) returns error bounds for the solution of a complex symmetric system of linear equations with multiple right-hand sides, AX=B. It improves the solution by iterative refinement, in order to reduce the backward error as much as possible.

Syntax

[x, ferr, berr, info] = f07nv(uplo, a, af, ipiv, b, x, 'n', n, 'nrhs_p', nrhs_p)
[x, ferr, berr, info] = nag_lapack_zsyrfs(uplo, a, af, ipiv, b, x, 'n', n, 'nrhs_p', nrhs_p)

Description

nag_lapack_zsyrfs (f07nv) returns the backward errors and estimated bounds on the forward errors for the solution of a complex symmetric system of linear equations with multiple right-hand sides AX=B. The function handles each right-hand side vector (stored as a column of the matrix B) independently, so we describe the function of nag_lapack_zsyrfs (f07nv) in terms of a single right-hand side b and solution x.
Given a computed solution x, the function computes the component-wise backward error β. This is the size of the smallest relative perturbation in each element of A and b such that x is the exact solution of a perturbed system
A+δAx=b+δb δaijβaij   and   δbiβbi .  
Then the function estimates a bound for the component-wise forward error in the computed solution, defined by:
maxixi-x^i/maxixi  
where x^ is the true solution.
For details of the method, see the F07 Chapter Introduction.

References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

Parameters

Compulsory Input Parameters

1:     uplo – string (length ≥ 1)
Specifies whether the upper or lower triangular part of A is stored and how A is to be factorized.
uplo='U'
The upper triangular part of A is stored and A is factorized as PUDUTPT, where U is upper triangular.
uplo='L'
The lower triangular part of A is stored and A is factorized as PLDLTPT, where L is lower triangular.
Constraint: uplo='U' or 'L'.
2:     alda: – complex array
The first dimension of the array a must be at least max1,n.
The second dimension of the array a must be at least max1,n.
The n by n original symmetric matrix A as supplied to nag_lapack_zsytrf (f07nr).
3:     afldaf: – complex array
The first dimension of the array af must be at least max1,n.
The second dimension of the array af must be at least max1,n.
Details of the factorization of A, as returned by nag_lapack_zsytrf (f07nr).
4:     ipiv: int64int32nag_int array
The dimension of the array ipiv must be at least max1,n
Details of the interchanges and the block structure of D, as returned by nag_lapack_zsytrf (f07nr).
5:     bldb: – complex array
The first dimension of the array b must be at least max1,n.
The second dimension of the array b must be at least max1,nrhs_p.
The n by r right-hand side matrix B.
6:     xldx: – complex array
The first dimension of the array x must be at least max1,n.
The second dimension of the array x must be at least max1,nrhs_p.
The n by r solution matrix X, as returned by nag_lapack_zsytrs (f07ns).

Optional Input Parameters

1:     n int64int32nag_int scalar
Default: the first dimension of the arrays a, af, b, x and the second dimension of the arrays a, af, ipiv.
n, the order of the matrix A.
Constraint: n0.
2:     nrhs_p int64int32nag_int scalar
Default: the second dimension of the arrays b, x. (An error is raised if these dimensions are not equal.)
r, the number of right-hand sides.
Constraint: nrhs_p0.

Output Parameters

1:     xldx: – complex array
The first dimension of the array x will be max1,n.
The second dimension of the array x will be max1,nrhs_p.
The improved solution matrix X.
2:     ferrnrhs_p – double array
ferrj contains an estimated error bound for the jth solution vector, that is, the jth column of X, for j=1,2,,r.
3:     berrnrhs_p – double array
berrj contains the component-wise backward error bound β for the jth solution vector, that is, the jth column of X, for j=1,2,,r.
4:     info int64int32nag_int scalar
info=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

   info<0
If info=-i, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.

Accuracy

The bounds returned in ferr are not rigorous, because they are estimated, not computed exactly; but in practice they almost always overestimate the actual error.

Further Comments

For each right-hand side, computation of the backward error involves a minimum of 16n2 real floating-point operations. Each step of iterative refinement involves an additional 24n2 real operations. At most five steps of iterative refinement are performed, but usually only one or two steps are required.
Estimating the forward error involves solving a number of systems of linear equations of the form Ax=b; the number is usually 5 and never more than 11. Each solution involves approximately 8n2 real operations.
The real analogue of this function is nag_lapack_dsyrfs (f07mh).

Example

This example solves the system of equations AX=B using iterative refinement and to compute the forward and backward error bounds, where
A= -0.39-0.71i 5.14-0.64i -7.86-2.96i 3.80+0.92i 5.14-0.64i 8.86+1.81i -3.52+0.58i 5.32-1.59i -7.86-2.96i -3.52+0.58i -2.83-0.03i -1.54-2.86i 3.80+0.92i 5.32-1.59i -1.54-2.86i -0.56+0.12i  
and
B= -55.64+41.22i -19.09-35.97i -48.18+66.00i -12.08-27.02i -0.49-01.47i 6.95+20.49i -6.43+19.24i -4.59-35.53i .  
Here A is symmetric and must first be factorized by nag_lapack_zsytrf (f07nr).
function f07nv_example


fprintf('f07nv example results\n\n');

% Complex symmetrix matrix A, lower triangle stored.
uplo = 'L';
a = [-0.39 - 0.71i,  0    + 0i,     0    + 0i,     0    + 0i;
      5.14 - 0.64i,  8.86 + 1.81i,  0    + 0i,     0    + 0i;
     -7.86 - 2.96i, -3.52 + 0.58i, -2.83 - 0.03i,  0    + 0i;
      3.80 + 0.92i,  5.32 - 1.59i, -1.54 - 2.86i, -0.56 + 0.12i];

% Factorize A
[af, ipiv, info] = f07nr( ...
                          uplo, a);

% RHS
b = [ -55.64 + 41.22i, -19.09 - 35.97i;
      -48.18 + 66.00i, -12.08 - 27.02i;
       -0.49 -  1.47i,   6.95 + 20.49i;
       -6.43 + 19.24i,  -4.59 - 35.53i];

% Solve Ax=b
[x, info] = f07ns( ...
                   uplo, af, ipiv, b);

% Refine
[x, ferr, berr, info] = f07nv( ...
                               uplo, a, af, ipiv, b, x);

disp('Solution(s)');
disp(x);
fprintf('Backward errors (machine-dependent)\n   ')
fprintf('%11.1e', berr);
fprintf('\nEstimated forward error bounds (machine-dependent)\n   ')
fprintf('%11.1e', ferr);
fprintf('\n');


f07nv example results

Solution(s)
   1.0000 - 1.0000i  -2.0000 - 1.0000i
  -2.0000 + 5.0000i   1.0000 - 3.0000i
   3.0000 - 2.0000i   3.0000 + 2.0000i
  -4.0000 + 3.0000i  -1.0000 + 1.0000i

Backward errors (machine-dependent)
       5.5e-17    7.3e-17
Estimated forward error bounds (machine-dependent)
       1.2e-14    1.2e-14

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015