hide long namesshow long names
hide short namesshow short names
Integer type:  int32  int64  nag_int  show int32  show int32  show int64  show int64  show nag_int  show nag_int

PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

NAG Toolbox: nag_lapack_zgesv (f07an)

 Contents

    1  Purpose
    2  Syntax
    7  Accuracy
    9  Example

Purpose

nag_lapack_zgesv (f07an) computes the solution to a complex system of linear equations
AX=B ,  
where A is an n by n matrix and X and B are n by r matrices.

Syntax

[a, ipiv, b, info] = f07an(a, b, 'n', n, 'nrhs_p', nrhs_p)
[a, ipiv, b, info] = nag_lapack_zgesv(a, b, 'n', n, 'nrhs_p', nrhs_p)

Description

nag_lapack_zgesv (f07an) uses the LU decomposition with partial pivoting and row interchanges to factor A as
A=PLU ,  
where P is a permutation matrix, L is unit lower triangular, and U is upper triangular. The factored form of A is then used to solve the system of equations AX=B.

References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia http://www.netlib.org/lapack/lug
Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

Parameters

Compulsory Input Parameters

1:     alda: – complex array
The first dimension of the array a must be at least max1,n.
The second dimension of the array a must be at least max1,n.
The n by n coefficient matrix A.
2:     bldb: – complex array
The first dimension of the array b must be at least max1,n.
The second dimension of the array b must be at least max1,nrhs_p.
The n by r right-hand side matrix B.

Optional Input Parameters

1:     n int64int32nag_int scalar
Default: the first dimension of the array b.
n, the number of linear equations, i.e., the order of the matrix A.
Constraint: n0.
2:     nrhs_p int64int32nag_int scalar
Default: the second dimension of the array b.
r, the number of right-hand sides, i.e., the number of columns of the matrix B.
Constraint: nrhs_p0.

Output Parameters

1:     alda: – complex array
The first dimension of the array a will be max1,n.
The second dimension of the array a will be max1,n.
The factors L and U from the factorization A=PLU; the unit diagonal elements of L are not stored.
2:     ipivn int64int32nag_int array
If no constraints are violated, the pivot indices that define the permutation matrix P; at the ith step row i of the matrix was interchanged with row ipivi. ipivi=i indicates a row interchange was not required.
3:     bldb: – complex array
The first dimension of the array b will be max1,n.
The second dimension of the array b will be max1,nrhs_p.
If info=0, the n by r solution matrix X.
4:     info int64int32nag_int scalar
info=0 unless the function detects an error (see Error Indicators and Warnings).

Error Indicators and Warnings

Cases prefixed with W are classified as warnings and do not generate an error of type NAG:error_n. See nag_issue_warnings.

   info<0
If info=-i, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.
W  info>0
Element _ of the diagonal is exactly zero. The factorization has been completed, but the factor U is exactly singular, so the solution could not be computed.

Accuracy

The computed solution for a single right-hand side, x^ , satisfies the equation of the form
A+E x^=b ,  
where
E1 = Oε A1  
and ε  is the machine precision. An approximate error bound for the computed solution is given by
x^ - x 1 x 1 κA E 1 A 1  
where κA = A-1 1 A 1 , the condition number of A  with respect to the solution of the linear equations. See Section 4.4 of Anderson et al. (1999) for further details.
Following the use of nag_lapack_zgesv (f07an), nag_lapack_zgecon (f07au) can be used to estimate the condition number of A  and nag_lapack_zgerfs (f07av) can be used to obtain approximate error bounds. Alternatives to nag_lapack_zgesv (f07an), which return condition and error estimates directly are nag_linsys_complex_square_solve (f04ca) and nag_lapack_zgesvx (f07ap).

Further Comments

The total number of floating-point operations is approximately 83 n3 + 8n2 r , where r  is the number of right-hand sides.
The real analogue of this function is nag_lapack_dgesv (f07aa).

Example

This example solves the equations
Ax = b ,  
where A is the general matrix
A = -1.34+2.55i 0.28+3.17i -6.39-2.20i 0.72-0.92i -0.17-1.41i 3.31-0.15i -0.15+1.34i 1.29+1.38i -3.29-2.39i -1.91+4.42i -0.14-1.35i 1.72+1.35i 2.41+0.39i -0.56+1.47i -0.83-0.69i -1.96+0.67i   and   b = 26.26+51.78i 6.43-08.68i -5.75+25.31i 1.16+02.57i .  
Details of the LU factorization of A are also output.
function f07an_example


fprintf('f07an example results\n\n');

% Linear system Ax = B
a = [ -1.34 + 2.55i,  0.28 + 3.17i,  -6.39 - 2.2i,   0.72 - 0.92i;
      -0.17 - 1.41i,  3.31 - 0.15i,  -0.15 + 1.34i,  1.29 + 1.38i;
      -3.29 - 2.39i, -1.91 + 4.42i,  -0.14 - 1.35i,  1.72 + 1.35i;
       2.41 + 0.39i, -0.56 + 1.47i,  -0.83 - 0.69i, -1.96 + 0.67i];
b = [ 26.26 + 51.78i;
       6.43 -  8.68i;
      -5.75 + 25.31i;
       1.16 +  2.57i];

[LU, ipiv, x, info] = f07an(a, b);

disp('Solution');
disp(x');
disp('Details of factorization');
disp(LU);
disp('Pivot indices');
disp(double(ipiv'));


f07an example results

Solution
   1.0000 - 1.0000i   2.0000 + 3.0000i  -4.0000 + 5.0000i   0.0000 - 6.0000i

Details of factorization
  -3.2900 - 2.3900i  -1.9100 + 4.4200i  -0.1400 - 1.3500i   1.7200 + 1.3500i
   0.2376 + 0.2560i   4.8952 - 0.7114i  -0.4623 + 1.6966i   1.2269 + 0.6190i
  -0.1020 - 0.7010i  -0.6691 + 0.3689i  -5.1414 - 1.1300i   0.9983 + 0.3850i
  -0.5359 + 0.2707i  -0.2040 + 0.8601i   0.0082 + 0.1211i   0.1482 - 0.1252i

Pivot indices
     3     2     3     4


PDF version (NAG web site, 64-bit version, 64-bit version)
Chapter Contents
Chapter Introduction
NAG Toolbox

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2015