F07GRF (ZPPTRF) (PDF version)
F07 Chapter Contents
F07 Chapter Introduction
NAG Library Manual

NAG Library Routine Document

F07GRF (ZPPTRF)

Note:  before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

+ Contents

    1  Purpose
    7  Accuracy

1  Purpose

F07GRF (ZPPTRF) computes the Cholesky factorization of a complex Hermitian positive definite matrix, using packed storage.

2  Specification

SUBROUTINE F07GRF ( UPLO, N, AP, INFO)
INTEGER  N, INFO
COMPLEX (KIND=nag_wp)  AP(*)
CHARACTER(1)  UPLO
The routine may be called by its LAPACK name zpptrf.

3  Description

F07GRF (ZPPTRF) forms the Cholesky factorization of a complex Hermitian positive definite matrix A either as A=UHU if UPLO='U' or A=LLH if UPLO='L', where U is an upper triangular matrix and L is lower triangular, using packed storage.

4  References

Demmel J W (1989) On floating-point errors in Cholesky LAPACK Working Note No. 14 University of Tennessee, Knoxville
Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

5  Parameters

1:     UPLO – CHARACTER(1)Input
On entry: specifies whether the upper or lower triangular part of A is stored and how A is to be factorized.
UPLO='U'
The upper triangular part of A is stored and A is factorized as UHU, where U is upper triangular.
UPLO='L'
The lower triangular part of A is stored and A is factorized as LLH, where L is lower triangular.
Constraint: UPLO='U' or 'L'.
2:     N – INTEGERInput
On entry: n, the order of the matrix A.
Constraint: N0.
3:     AP(*) – COMPLEX (KIND=nag_wp) arrayInput/Output
Note: the dimension of the array AP must be at least max1,N×N+1/2.
On entry: the n by n Hermitian matrix A, packed by columns.
More precisely,
  • if UPLO='U', the upper triangle of A must be stored with element Aij in APi+jj-1/2 for ij;
  • if UPLO='L', the lower triangle of A must be stored with element Aij in APi+2n-jj-1/2 for ij.
On exit: if INFO=0, the factor U or L from the Cholesky factorization A=UHU or A=LLH, in the same storage format as A.
4:     INFO – INTEGEROutput
On exit: INFO=0 unless the routine detects an error (see Section 6).

6  Error Indicators and Warnings

Errors or warnings detected by the routine:
INFO<0
If INFO=-i, the ith parameter had an illegal value. An explanatory message is output, and execution of the program is terminated.
INFO>0
If INFO=i, the leading minor of order i is not positive definite and the factorization could not be completed. Hence A itself is not positive definite. This may indicate an error in forming the matrix A. To factorize a matrix which is not positive definite, call F07PRF (ZHPTRF) instead.

7  Accuracy

If UPLO='U', the computed factor U is the exact factor of a perturbed matrix A+E, where
EcnεUHU ,
cn is a modest linear function of n, and ε is the machine precision.
If UPLO='L', a similar statement holds for the computed factor L. It follows that eijcnεaiiajj.

8  Further Comments

The total number of real floating point operations is approximately 43n3.
A call to F07GRF (ZPPTRF) may be followed by calls to the routines:
The real analogue of this routine is F07GDF (DPPTRF).

9  Example

This example computes the Cholesky factorization of the matrix A, where
A= 3.23+0.00i 1.51-1.92i 1.90+0.84i 0.42+2.50i 1.51+1.92i 3.58+0.00i -0.23+1.11i -1.18+1.37i 1.90-0.84i -0.23-1.11i 4.09+0.00i 2.33-0.14i 0.42-2.50i -1.18-1.37i 2.33+0.14i 4.29+0.00i .
using packed storage.

9.1  Program Text

Program Text (f07grfe.f90)

9.2  Program Data

Program Data (f07grfe.d)

9.3  Program Results

Program Results (f07grfe.r)


F07GRF (ZPPTRF) (PDF version)
F07 Chapter Contents
F07 Chapter Introduction
NAG Library Manual

© The Numerical Algorithms Group Ltd, Oxford, UK. 2012