g13fd forecasts the conditional variances, from a type II sequence, where is the forecast horizon and is the current time (see Engle and Ng (1993)).
Syntax
C# |
---|
public static void g13fd( int num, int nt, int ip, int iq, double[] theta, double gamma, double[] fht, double[] ht, double[] et, out int ifail ) |
Visual Basic |
---|
Public Shared Sub g13fd ( _ num As Integer, _ nt As Integer, _ ip As Integer, _ iq As Integer, _ theta As Double(), _ gamma As Double, _ fht As Double(), _ ht As Double(), _ et As Double(), _ <OutAttribute> ByRef ifail As Integer _ ) |
Visual C++ |
---|
public: static void g13fd( int num, int nt, int ip, int iq, array<double>^ theta, double gamma, array<double>^ fht, array<double>^ ht, array<double>^ et, [OutAttribute] int% ifail ) |
F# |
---|
static member g13fd : num : int * nt : int * ip : int * iq : int * theta : float[] * gamma : float * fht : float[] * ht : float[] * et : float[] * ifail : int byref -> unit |
Parameters
- num
- Type: System..::..Int32
Constraint: .
- nt
- Type: System..::..Int32On entry: , the forecast horizon.Constraint: .
- ip
- Type: System..::..Int32On entry: the number of coefficients, , for .Constraints:
- ;
- .
- iq
- Type: System..::..Int32On entry: the number of coefficients, , for .Constraints:
- ;
- .
- theta
- Type: array<System..::..Double>[]()[][]An array of size []
- gamma
- Type: System..::..DoubleOn entry: the asymmetry parameter for the sequence.
- fht
- Type: array<System..::..Double>[]()[][]An array of size [nt]On exit: the forecast values of the conditional variance, , for .
- ht
- Type: array<System..::..Double>[]()[][]An array of size [num]On entry: the sequence of past conditional variances for the process, , for .
- et
- Type: array<System..::..Double>[]()[][]An array of size [num]On entry: the sequence of past residuals for the process, , for .
- ifail
- Type: System..::..Int32%On exit: unless the method detects an error or a warning has been flagged (see [Error Indicators and Warnings]).
Description
References
Bollerslev T (1986) Generalised autoregressive conditional heteroskedasticity Journal of Econometrics 31 307–327
Engle R (1982) Autoregressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflation Econometrica 50 987–1008
Engle R and Ng V (1993) Measuring and testing the impact of news on volatility Journal of Finance 48 1749–1777
Hamilton J (1994) Time Series Analysis Princeton University Press
Error Indicators and Warnings
Errors or warnings detected by the method:
On entry, , or , or , or , or .
Accuracy
Not applicable.
Parallelism and Performance
None.
Further Comments
None.