g02be computes means and standard deviations of variables, sums of squares and cross-products about zero, and correlation-like coefficients for a set of data omitting completely any cases with a missing observation for any variable.

Syntax

C#
public static void g02be(
	int n,
	int m,
	double[,] x,
	int[] miss,
	double[] xmiss,
	double[] xbar,
	double[] std,
	double[,] sspz,
	double[,] rz,
	out int ncases,
	out int ifail
)
Visual Basic
Public Shared Sub g02be ( _
	n As Integer, _
	m As Integer, _
	x As Double(,), _
	miss As Integer(), _
	xmiss As Double(), _
	xbar As Double(), _
	std As Double(), _
	sspz As Double(,), _
	rz As Double(,), _
	<OutAttribute> ByRef ncases As Integer, _
	<OutAttribute> ByRef ifail As Integer _
)
Visual C++
public:
static void g02be(
	int n, 
	int m, 
	array<double,2>^ x, 
	array<int>^ miss, 
	array<double>^ xmiss, 
	array<double>^ xbar, 
	array<double>^ std, 
	array<double,2>^ sspz, 
	array<double,2>^ rz, 
	[OutAttribute] int% ncases, 
	[OutAttribute] int% ifail
)
F#
static member g02be : 
        n : int * 
        m : int * 
        x : float[,] * 
        miss : int[] * 
        xmiss : float[] * 
        xbar : float[] * 
        std : float[] * 
        sspz : float[,] * 
        rz : float[,] * 
        ncases : int byref * 
        ifail : int byref -> unit 

Parameters

n
Type: System..::..Int32
On entry: n, the number of observations or cases.
Constraint: n2.
m
Type: System..::..Int32
On entry: m, the number of variables.
Constraint: m2.
x
Type: array<System..::..Double,2>[,](,)[,][,]
An array of size [dim1, m]
Note: dim1 must satisfy the constraint: dim1n
On entry: x[i-1,j-1] must be set to xij, the value of the ith observation on the jth variable, for i=1,2,,n and j=1,2,,m.
miss
Type: array<System..::..Int32>[]()[][]
An array of size [m]
On entry: miss[j-1] must be set equal to 1 if a missing value, xmj, is to be specified for the jth variable in the array x, or set equal to 0 otherwise. Values of miss must be given for all m variables in the array x.
On exit: the array miss is overwritten by the method, and the information it contained on entry is lost.
xmiss
Type: array<System..::..Double>[]()[][]
An array of size [m]
On entry: xmiss[j-1] must be set to the missing value, xmj, to be associated with the jth variable in the array x, for those variables for which missing values are specified by means of the array miss (see [Accuracy]).
On exit: the array xmiss is overwritten by the method, and the information it contained on entry is lost.
xbar
Type: array<System..::..Double>[]()[][]
An array of size [m]
On exit: the mean value, x-j, of the jth variable, for j=1,2,,m.
std
Type: array<System..::..Double>[]()[][]
An array of size [m]
On exit: the standard deviation, sj, of the jth variable, for j=1,2,,m.
sspz
Type: array<System..::..Double,2>[,](,)[,][,]
An array of size [dim1, m]
Note: dim1 must satisfy the constraint: dim1m
On exit: sspz[j-1,k-1] is the cross-product about zero, S~jk, for j=1,2,,m and k=1,2,,m.
rz
Type: array<System..::..Double,2>[,](,)[,][,]
An array of size [dim1, m]
Note: dim1 must satisfy the constraint: dim1m
On exit: rz[j-1,k-1] is the correlation-like coefficient, R~jk, between the jth and kth variables, for j=1,2,,m and k=1,2,,m.
ncases
Type: System..::..Int32%
On exit: the number of cases actually used in the calculations (when cases involving missing values have been eliminated).
ifail
Type: System..::..Int32%
On exit: ifail=0 unless the method detects an error or a warning has been flagged (see [Error Indicators and Warnings]).

Description

The input data consists of n observations for each of m variables, given as an array
xij,  i=1,2,,nn2,j=1,2,,mm2,
where xij is the ith observation on the jth variable. In addition, each of the m variables may optionally have associated with it a value which is to be considered as representing a missing observation for that variable; the missing value for the jth variable is denoted by xmj. Missing values need not be specified for all variables.
Let wi=0 if observation i contains a missing value for any of those variables for which missing values have been declared, i.e., if xij=xmj for any j for which an xmj has been assigned (see also [Accuracy]); and wi=1 otherwise, for i=1,2,,n.
The quantities calculated are:
(a) Means:
x-j=i=1nwixiji=1nwi,  j=1,2,,m.
(b) Standard deviations:
sj=i=1nwixij-x-j2i=1nwi-1,  j=1,2,,m.
(c) Sums of squares and cross-products about zero:
S~jk=i=1nwixijxik,  j,k=1,2,,m.
(d) Correlation-like coefficients:
R~jk=S~jkS~jjS~kk,  j,k=1,2,,m.
If S~jj or S~kk is zero, R~jk is set to zero.

References

None.

Error Indicators and Warnings

Errors or warnings detected by the method:
Some error messages may refer to parameters that are dropped from this interface (LDX, LDSSPZ, LDRZ) In these cases, an error in another parameter has usually caused an incorrect value to be inferred.
ifail=1
On entry,n<2.
ifail=2
On entry,m<2.
ifail=4
After observations with missing values were omitted, no cases remained.
ifail=5
After observations with missing values were omitted, only one case remained.
ifail=-9000
An error occured, see message report.
ifail=-6000
Invalid Parameters value
ifail=-4000
Invalid dimension for array value
ifail=-8000
Negative dimension for array value
ifail=-6000
Invalid Parameters value

Accuracy

g02be does not use additional precision arithmetic for the accumulation of scalar products, so there may be a loss of significant figures for large n.
You are warned of the need to exercise extreme care in your selection of missing values. g02be treats all values in the inclusive range 1±0.1x02be-2×xmj, where xmj is the missing value for variable j specified in xmiss.
You must therefore ensure that the missing value chosen for each variable is sufficiently different from all valid values for that variable so that none of the valid values fall within the range indicated above.

Parallelism and Performance

None.

Further Comments

The time taken by g02be depends on n and m, and the occurrence of missing values.
The method uses a two-pass algorithm.

Example

This example reads in a set of data consisting of five observations on each of three variables. Missing values of 0.0 are declared for the first and third variables; no missing value is specified for the second variable. The means, standard deviations, sums of squares and cross-products about zero, and correlation-like coefficients for all three variables are then calculated and printed, omitting completely all cases containing missing values; cases 3 and 4 are therefore eliminated, leaving only three cases in the calculations.

Example program (C#): g02bee.cs

Example program data: g02bee.d

Example program results: g02bee.r

See Also