f08 Chapter Contents
f08 Chapter Introduction
NAG Library Manual

NAG Library Function Documentnag_dsbevx (f08hbc)

1  Purpose

nag_dsbevx (f08hbc) computes selected eigenvalues and, optionally, eigenvectors of a real $n$ by $n$ symmetric band matrix $A$ of bandwidth $\left(2{k}_{d}+1\right)$. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues.

2  Specification

 #include #include
 void nag_dsbevx (Nag_OrderType order, Nag_JobType job, Nag_RangeType range, Nag_UploType uplo, Integer n, Integer kd, double ab[], Integer pdab, double q[], Integer pdq, double vl, double vu, Integer il, Integer iu, double abstol, Integer *m, double w[], double z[], Integer pdz, Integer jfail[], NagError *fail)

3  Description

The symmetric band matrix $A$ is first reduced to tridiagonal form, using orthogonal similarity transformations. The required eigenvalues and eigenvectors are then computed from the tridiagonal matrix; the method used depends upon whether all, or selected, eigenvalues and eigenvectors are required.

4  References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia http://www.netlib.org/lapack/lug
Demmel J W and Kahan W (1990) Accurate singular values of bidiagonal matrices SIAM J. Sci. Statist. Comput. 11 873–912
Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

5  Arguments

1:    $\mathbf{order}$Nag_OrderTypeInput
On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by ${\mathbf{order}}=\mathrm{Nag_RowMajor}$. See Section 3.2.1.3 in the Essential Introduction for a more detailed explanation of the use of this argument.
Constraint: ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ or $\mathrm{Nag_ColMajor}$.
2:    $\mathbf{job}$Nag_JobTypeInput
On entry: indicates whether eigenvectors are computed.
${\mathbf{job}}=\mathrm{Nag_EigVals}$
Only eigenvalues are computed.
${\mathbf{job}}=\mathrm{Nag_DoBoth}$
Eigenvalues and eigenvectors are computed.
Constraint: ${\mathbf{job}}=\mathrm{Nag_EigVals}$ or $\mathrm{Nag_DoBoth}$.
3:    $\mathbf{range}$Nag_RangeTypeInput
On entry: if ${\mathbf{range}}=\mathrm{Nag_AllValues}$, all eigenvalues will be found.
If ${\mathbf{range}}=\mathrm{Nag_Interval}$, all eigenvalues in the half-open interval $\left({\mathbf{vl}},{\mathbf{vu}}\right]$ will be found.
If ${\mathbf{range}}=\mathrm{Nag_Indices}$, the ilth to iuth eigenvalues will be found.
Constraint: ${\mathbf{range}}=\mathrm{Nag_AllValues}$, $\mathrm{Nag_Interval}$ or $\mathrm{Nag_Indices}$.
4:    $\mathbf{uplo}$Nag_UploTypeInput
On entry: if ${\mathbf{uplo}}=\mathrm{Nag_Upper}$, the upper triangular part of $A$ is stored.
If ${\mathbf{uplo}}=\mathrm{Nag_Lower}$, the lower triangular part of $A$ is stored.
Constraint: ${\mathbf{uplo}}=\mathrm{Nag_Upper}$ or $\mathrm{Nag_Lower}$.
5:    $\mathbf{n}$IntegerInput
On entry: $n$, the order of the matrix $A$.
Constraint: ${\mathbf{n}}\ge 0$.
6:    $\mathbf{kd}$IntegerInput
On entry: if ${\mathbf{uplo}}=\mathrm{Nag_Upper}$, the number of superdiagonals, ${k}_{d}$, of the matrix $A$.
If ${\mathbf{uplo}}=\mathrm{Nag_Lower}$, the number of subdiagonals, ${k}_{d}$, of the matrix $A$.
Constraint: ${\mathbf{kd}}\ge 0$.
7:    $\mathbf{ab}\left[\mathit{dim}\right]$doubleInput/Output
Note: the dimension, dim, of the array ab must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pdab}}×{\mathbf{n}}\right)$.
On entry: the upper or lower triangle of the $n$ by $n$ symmetric band matrix $A$.
This is stored as a notional two-dimensional array with row elements or column elements stored contiguously. The storage of elements of ${A}_{ij}$, depends on the order and uplo arguments as follows:
• if ${\mathbf{order}}=\mathrm{Nag_ColMajor}$ and ${\mathbf{uplo}}=\mathrm{Nag_Upper}$,
${A}_{ij}$ is stored in ${\mathbf{ab}}\left[{k}_{d}+i-j+\left(j-1\right)×{\mathbf{pdab}}\right]$, for $j=1,\dots ,n$ and $i=\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,j-{k}_{d}\right),\dots ,j$;
• if ${\mathbf{order}}=\mathrm{Nag_ColMajor}$ and ${\mathbf{uplo}}=\mathrm{Nag_Lower}$,
${A}_{ij}$ is stored in ${\mathbf{ab}}\left[i-j+\left(j-1\right)×{\mathbf{pdab}}\right]$, for $j=1,\dots ,n$ and $i=j,\dots ,\mathrm{min}\phantom{\rule{0.125em}{0ex}}\left(n,j+{k}_{d}\right)$;
• if ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ and ${\mathbf{uplo}}=\mathrm{Nag_Upper}$,
${A}_{ij}$ is stored in ${\mathbf{ab}}\left[j-i+\left(i-1\right)×{\mathbf{pdab}}\right]$, for $i=1,\dots ,n$ and $j=i,\dots ,\mathrm{min}\phantom{\rule{0.125em}{0ex}}\left(n,i+{k}_{d}\right)$;
• if ${\mathbf{order}}=\mathrm{Nag_RowMajor}$ and ${\mathbf{uplo}}=\mathrm{Nag_Lower}$,
${A}_{ij}$ is stored in ${\mathbf{ab}}\left[{k}_{d}+j-i+\left(i-1\right)×{\mathbf{pdab}}\right]$, for $i=1,\dots ,n$ and $j=\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,i-{k}_{d}\right),\dots ,i$.
On exit: ab is overwritten by values generated during the reduction to tridiagonal form.
The first superdiagonal or subdiagonal and the diagonal of the tridiagonal matrix $T$ are returned in ab using the same storage format as described above.
8:    $\mathbf{pdab}$IntegerInput
On entry: the stride separating row or column elements (depending on the value of order) of the matrix $A$ in the array ab.
Constraint: ${\mathbf{pdab}}\ge {\mathbf{kd}}+1$.
9:    $\mathbf{q}\left[\mathit{dim}\right]$doubleOutput
Note: the dimension, dim, of the array q must be at least
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pdq}}×{\mathbf{n}}\right)$ when ${\mathbf{job}}=\mathrm{Nag_DoBoth}$;
• $1$ otherwise.
The $\left(i,j\right)$th element of the matrix $Q$ is stored in
• ${\mathbf{q}}\left[\left(j-1\right)×{\mathbf{pdq}}+i-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• ${\mathbf{q}}\left[\left(i-1\right)×{\mathbf{pdq}}+j-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
On exit: if ${\mathbf{job}}=\mathrm{Nag_DoBoth}$, the $n$ by $n$ orthogonal matrix used in the reduction to tridiagonal form.
If ${\mathbf{job}}=\mathrm{Nag_EigVals}$, q is not referenced.
10:  $\mathbf{pdq}$IntegerInput
On entry: the stride separating row or column elements (depending on the value of order) in the array q.
Constraints:
• if ${\mathbf{job}}=\mathrm{Nag_DoBoth}$, ${\mathbf{pdq}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$;
• otherwise ${\mathbf{pdq}}\ge 1$.
11:  $\mathbf{vl}$doubleInput
12:  $\mathbf{vu}$doubleInput
On entry: if ${\mathbf{range}}=\mathrm{Nag_Interval}$, the lower and upper bounds of the interval to be searched for eigenvalues.
If ${\mathbf{range}}=\mathrm{Nag_AllValues}$ or $\mathrm{Nag_Indices}$, vl and vu are not referenced.
Constraint: if ${\mathbf{range}}=\mathrm{Nag_Interval}$, ${\mathbf{vl}}<{\mathbf{vu}}$.
13:  $\mathbf{il}$IntegerInput
14:  $\mathbf{iu}$IntegerInput
On entry: if ${\mathbf{range}}=\mathrm{Nag_Indices}$, the indices (in ascending order) of the smallest and largest eigenvalues to be returned.
If ${\mathbf{range}}=\mathrm{Nag_AllValues}$ or $\mathrm{Nag_Interval}$, il and iu are not referenced.
Constraints:
• if ${\mathbf{range}}=\mathrm{Nag_Indices}$ and ${\mathbf{n}}=0$, ${\mathbf{il}}=1$ and ${\mathbf{iu}}=0$;
• if ${\mathbf{range}}=\mathrm{Nag_Indices}$ and ${\mathbf{n}}>0$, $1\le {\mathbf{il}}\le {\mathbf{iu}}\le {\mathbf{n}}$.
15:  $\mathbf{abstol}$doubleInput
On entry: the absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted as converged when it is determined to lie in an interval $\left[a,b\right]$ of width less than or equal to
 $abstol+ε maxa,b ,$
where $\epsilon$ is the machine precision. If abstol is less than or equal to zero, then $\epsilon {‖T‖}_{1}$ will be used in its place, where $T$ is the tridiagonal matrix obtained by reducing $A$ to tridiagonal form. Eigenvalues will be computed most accurately when abstol is set to twice the underflow threshold $2×{\mathbf{nag_real_safe_small_number}}$, not zero. If this function returns with ${\mathbf{fail}}\mathbf{.}\mathbf{code}=$ NE_CONVERGENCE, indicating that some eigenvectors did not converge, try setting abstol to $2×{\mathbf{nag_real_safe_small_number}}$. See Demmel and Kahan (1990).
16:  $\mathbf{m}$Integer *Output
On exit: the total number of eigenvalues found. $0\le {\mathbf{m}}\le {\mathbf{n}}$.
If ${\mathbf{range}}=\mathrm{Nag_AllValues}$, ${\mathbf{m}}={\mathbf{n}}$.
If ${\mathbf{range}}=\mathrm{Nag_Indices}$, ${\mathbf{m}}={\mathbf{iu}}-{\mathbf{il}}+1$.
17:  $\mathbf{w}\left[{\mathbf{n}}\right]$doubleOutput
On exit: the first m elements contain the selected eigenvalues in ascending order.
18:  $\mathbf{z}\left[\mathit{dim}\right]$doubleOutput
Note: the dimension, dim, of the array z must be at least
• $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{pdz}}×{\mathbf{n}}\right)$ when ${\mathbf{job}}=\mathrm{Nag_DoBoth}$;
• $1$ otherwise.
The $\left(i,j\right)$th element of the matrix $Z$ is stored in
• ${\mathbf{z}}\left[\left(j-1\right)×{\mathbf{pdz}}+i-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_ColMajor}$;
• ${\mathbf{z}}\left[\left(i-1\right)×{\mathbf{pdz}}+j-1\right]$ when ${\mathbf{order}}=\mathrm{Nag_RowMajor}$.
On exit: if ${\mathbf{job}}=\mathrm{Nag_DoBoth}$, then
• if ${\mathbf{fail}}\mathbf{.}\mathbf{code}=$ NE_NOERROR, the first m columns of $Z$ contain the orthonormal eigenvectors of the matrix $A$ corresponding to the selected eigenvalues, with the $i$th column of $Z$ holding the eigenvector associated with ${\mathbf{w}}\left[i-1\right]$;
• if an eigenvector fails to converge (${\mathbf{fail}}\mathbf{.}\mathbf{code}=$ NE_CONVERGENCE), then that column of $Z$ contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in jfail.
If ${\mathbf{job}}=\mathrm{Nag_EigVals}$, z is not referenced.
19:  $\mathbf{pdz}$IntegerInput
On entry: the stride separating row or column elements (depending on the value of order) in the array z.
Constraints:
• if ${\mathbf{job}}=\mathrm{Nag_DoBoth}$, ${\mathbf{pdz}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$;
• otherwise ${\mathbf{pdz}}\ge 1$.
20:  $\mathbf{jfail}\left[\mathit{dim}\right]$IntegerOutput
Note: the dimension, dim, of the array jfail must be at least $\mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$.
On exit: if ${\mathbf{job}}=\mathrm{Nag_DoBoth}$, then
• if ${\mathbf{fail}}\mathbf{.}\mathbf{code}=$ NE_NOERROR, the first m elements of jfail are zero;
• if ${\mathbf{fail}}\mathbf{.}\mathbf{code}=$ NE_CONVERGENCE, jfail contains the indices of the eigenvectors that failed to converge.
If ${\mathbf{job}}=\mathrm{Nag_EigVals}$, jfail is not referenced.
21:  $\mathbf{fail}$NagError *Input/Output
The NAG error argument (see Section 3.6 in the Essential Introduction).

6  Error Indicators and Warnings

NE_ALLOC_FAIL
Dynamic memory allocation failed.
See Section 3.2.1.2 in the Essential Introduction for further information.
On entry, argument $〈\mathit{\text{value}}〉$ had an illegal value.
NE_CONVERGENCE
The algorithm failed to converge; $〈\mathit{\text{value}}〉$ eigenvectors did not converge. Their indices are stored in array jfail.
NE_ENUM_INT_2
On entry, ${\mathbf{job}}=〈\mathit{\text{value}}〉$, ${\mathbf{pdq}}=〈\mathit{\text{value}}〉$ and ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: if ${\mathbf{job}}=\mathrm{Nag_DoBoth}$, ${\mathbf{pdq}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$;
otherwise ${\mathbf{pdq}}\ge 1$.
On entry, ${\mathbf{job}}=〈\mathit{\text{value}}〉$, ${\mathbf{pdz}}=〈\mathit{\text{value}}〉$ and ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: if ${\mathbf{job}}=\mathrm{Nag_DoBoth}$, ${\mathbf{pdz}}\ge \mathrm{max}\phantom{\rule{0.125em}{0ex}}\left(1,{\mathbf{n}}\right)$;
otherwise ${\mathbf{pdz}}\ge 1$.
NE_ENUM_INT_3
On entry, ${\mathbf{range}}=〈\mathit{\text{value}}〉$, ${\mathbf{il}}=〈\mathit{\text{value}}〉$, ${\mathbf{iu}}=〈\mathit{\text{value}}〉$ and ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: if ${\mathbf{range}}=\mathrm{Nag_Indices}$ and ${\mathbf{n}}=0$, ${\mathbf{il}}=1$ and ${\mathbf{iu}}=0$;
if ${\mathbf{range}}=\mathrm{Nag_Indices}$ and ${\mathbf{n}}>0$, $1\le {\mathbf{il}}\le {\mathbf{iu}}\le {\mathbf{n}}$.
NE_ENUM_REAL_2
On entry, ${\mathbf{range}}=〈\mathit{\text{value}}〉$, ${\mathbf{vl}}=〈\mathit{\text{value}}〉$ and ${\mathbf{vu}}=〈\mathit{\text{value}}〉$.
Constraint: if ${\mathbf{range}}=\mathrm{Nag_Interval}$, ${\mathbf{vl}}<{\mathbf{vu}}$.
NE_INT
On entry, ${\mathbf{kd}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{kd}}\ge 0$.
On entry, ${\mathbf{n}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{n}}\ge 0$.
On entry, ${\mathbf{pdab}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pdab}}>0$.
On entry, ${\mathbf{pdq}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pdq}}>0$.
On entry, ${\mathbf{pdz}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pdz}}>0$.
NE_INT_2
On entry, ${\mathbf{pdab}}=〈\mathit{\text{value}}〉$ and ${\mathbf{kd}}=〈\mathit{\text{value}}〉$.
Constraint: ${\mathbf{pdab}}\ge {\mathbf{kd}}+1$.
NE_INTERNAL_ERROR
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
See Section 3.6.6 in the Essential Introduction for further information.
NE_NO_LICENCE
Your licence key may have expired or may not have been installed correctly.
See Section 3.6.5 in the Essential Introduction for further information.

7  Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix $\left(A+E\right)$, where
 $E2 = Oε A2 ,$
and $\epsilon$ is the machine precision. See Section 4.7 of Anderson et al. (1999) for further details.

8  Parallelism and Performance

nag_dsbevx (f08hbc) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
nag_dsbevx (f08hbc) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this function. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

The total number of floating-point operations is proportional to ${k}_{d}{n}^{2}$ if ${\mathbf{job}}=\mathrm{Nag_EigVals}$, and is proportional to ${n}^{3}$ if ${\mathbf{job}}=\mathrm{Nag_DoBoth}$ and ${\mathbf{range}}=\mathrm{Nag_AllValues}$, otherwise the number of floating-point operations will depend upon the number of computed eigenvectors.
The complex analogue of this function is nag_zhbevx (f08hpc).

10  Example

This example finds the eigenvalues in the half-open interval $\left(-3,3\right]$, and the corresponding eigenvectors, of the symmetric band matrix
 $A = 1 2 3 0 0 2 2 3 4 0 3 3 3 4 5 0 4 4 4 5 0 0 5 5 5 .$

10.1  Program Text

Program Text (f08hbce.c)

10.2  Program Data

Program Data (f08hbce.d)

10.3  Program Results

Program Results (f08hbce.r)