
Package ‘NAGFWrappers’
November 16, 2011

Version 23.0

Date 2011-11-20

Title Interfaces to routines from the NAG Fortran library

Author NAG

Maintainer NAG <support@nag.co.uk>

Depends R (>= 2.13.2)

SystemRequirements NAG Fortran library, Mark 23

Description Provides interfaces to a subset of routines from the NAG Fortran library

License Artistic-2.0

URL http://www.nag.co.uk

LazyLoad yes

LazyData yes

R topics documented:
a00ad . 2
e04ab . 5
e04bb . 7
e04cb . 9
e04dg . 11
e04fc . 13
e04fy . 17
e04gd . 18
e04gy . 22
e04gz . 24
e04hc . 26
e04hd . 28
e04he . 30
e04hy . 34
e04jc . 37
e04jy . 40
e04kd . 42

1

http://www.nag.co.uk

2 a00ad

e04ky . 46
e04kz . 49
e04lb . 51
e04ly . 55
e04mf . 58
e04nc . 61
e04nf . 64
e04nk . 68
e04nq . 73
e04uc . 79
e04uf . 85
e04ug . 93
e04us . 101
e04vj . 106
e04wd . 109
e04xa . 115
e04ya . 118
e04yb . 120
e04yc . 123
e05jb . 125
f08fa . 132
g02aa . 134
g02ab . 136
g02ae . 138
NAGFWrappers . 140
s17dc . 141
s17de . 142
s17dg . 144
s17dh . 145
s17dl . 146
s18dc . 147
s18de . 149
s18gk . 150
s22aa . 151
x02aj . 152
x02al . 153

Index 154

a00ad a00ad: Library identification, details of implementation, major and
minor marks

Description

a00ad prints information about the version of the NAG Library in use.

Usage

a00ad()

a00ad 3

Details

R interface to the NAG Fortran routine A00ADF.

Value

IMPL string
The implementation title which usually lists the target platform, operating sys-
tem and compiler.

PREC string
The working or basic precision of the implementation. Some functions may
perform operations in reduced precision or additional precision, but the great
majority will perform all operations in basic precision. See the introduction to
the Fortran library for definitions of these precisions.

PCODE string
The product code for the NAG Library implementation that is being used. The
code has a discernible structure, but it is not necessary to know the details of
this structure. The product code can be used to differentiate between individual
product licence codes.

MKMAJ integer
The major mark of the NAG Library implementation that is being used.

MKMIN integer
The minor mark of the NAG Library implementation that is being used.

HDWARE string
The target hardware for the NAG Library implementation that is being used.

OPSYS string
The target operating system for the NAG Library implementation that is being
used.

FCOMP string
The compiler used to build the NAG Library implementation that is being used.

VEND string
The subsidiary library, if any, that must be linked with the NAG Library imple-
mentation that is being used. If the implementation does not require a subsidiary
library then the string

'(self-contained)'

will be returned in vend.

LICVAL boolean
Specifies whether or not a valid licence has been found for the NAG Library
implementation that is being used.

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/A00/a00adf.pdf

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/A00/a00adf.pdf

4 a00ad

Examples

ans<-a00ad()
if (1){
writeLines(toString(cat(sprintf(" *** Start of NAG Toolbox for MATLAB implementation details ***\n\n","\n"))))

impl<-ans$IMPL

writeLines(sprintf(" Implementation title: %s\n",impl,"\n"))

prec<-ans$PREC

writeLines(toString(cat(sprintf(" Precision: %s\n",prec,"\n"))))

pcode<-ans$PCODE

writeLines(toString(cat(sprintf(" Product Code: %s\n",pcode,"\n"))))

mkmaj<-ans$MKMAJ

mkmin<-ans$MKMIN

writeLines(toString(cat(sprintf(" Mark: %d.%d\n",mkmaj,mkmin,"\n"))))

vend<-ans$VEND
if (match(vend,"(self-contained)")==1){
writeLines(toString(cat(sprintf(" Vendor Library: None\n","\n"))))
}
else
{

writeLines(toString(cat(sprintf(" Vendor Library: %s\n",vend,"\n"))))
}

writeLines(toString(cat(sprintf(" Applicable to:\n","\n"))))

hdware<-ans$HDWARE

writeLines(toString(cat(sprintf(" hardware - %s\n",hdware,"\n"))))

opsys<-ans$OPSYS

writeLines(toString(cat(sprintf(" op. sys. - %s\n",opsys,"\n"))))

fcomp<-ans$FCOMP

writeLines(toString(cat(sprintf(" compiler - %s\n",fcomp,"\n"))))

e04ab 5

writeLines(toString(cat(sprintf(" and compatible systems.\n\n","\n"))))

writeLines(toString(cat(sprintf(" *** End of NAG Toolbox for MATLAB implementation details ***\n\n","\n"))))

licval<-ans$LICVAL
if(licval){

pcode<-ans$PCODE

writeLines(toString(cat(sprintf(" A valid licence was found for %s\n\n",pcode,"\n"))))

}else {

pcode<-ans$PCODE

writeLines(toString(cat(sprintf(" A valid licence was not found for %s\n\n",pcode,"\n"))))

}
}

e04ab e04ab: Minimum, function of one variable using function values only

Description

e04ab searches for a minimum, in a given finite interval, of a continuous function of a single vari-
able, using function values only. The method (based on quadratic interpolation) is intended for
functions which have a continuous first derivative (although it will usually work if the derivative
has occasional discontinuities).

Usage

e04ab(funct, e1, e2, a, b, maxcal)

Arguments

funct function
You must supply this function to calculate the value of the function F (x) at any
point x in [ab]. It should be tested separately before being used in conjunction
with e04ab.
(FC) = funct(xc)

e1 double
The relative accuracy to which the position of a minimum is required. (Note
that, since e1 is a relative tolerance, the scaling of x is automatically taken into
account.)

e2 double
The absolute accuracy to which the position of a minimum is required. e2 should
be no smaller than 2ε.

6 e04ab

a double
The lower bound a of the interval containing a minimum.

b double
The upper bound b of the interval containing a minimum.

maxcal integer
The maximum number of calls of F (x) to be allowed.

Details

R interface to the NAG Fortran routine E04ABF.

Value

E1 double
If you set e1 to 0.0 (or to any value less than ε), e1will be reset to the default
value

√
ε before starting the minimization process.

E2 double
If you set e2 to 0.0 (or to any value less than ε), e2 will be reset to the default
value

√
ε.

A double
An improved lower bound on the position of the minimum.

B double
An improved upper bound on the position of the minimum.

MAXCAL integer
The total number of times that funct was actually called.

X double
The estimated position of the minimum.

F double
The function value at the final point given in x.

IFAIL integer
ifail = 0 unless the function detects an error or a warning has been flagged (see
the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04abf.pdf

Examples

ifail <- 0
funct = function(xc) {

fc <- sin(xc)/xc
list(FC = fc)

}

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04abf.pdf

e04bb 7

e1 <- 0

e2 <- 0

a <- 3.5

b <- 5

maxcal <- 30

e04ab(funct, e1, e2, a, b, maxcal)

e04bb e04bb: Minimum, function of one variable, using first derivative

Description

e04bb searches for a minimum, in a given finite interval, of a continuous function of a single vari-
able, using function and first derivative values. The method (based on cubic interpolation) is in-
tended for functions which have a continuous first derivative (although it will usually work if the
derivative has occasional discontinuities).

Usage

e04bb(funct, e1, e2, a, b, maxcal)

Arguments

funct function
You must supply this function to calculate the values of F (x) and dF

dx at any
point x in [ab].
(FC,GC) = funct(xc)

e1 double
The relative accuracy to which the position of a minimum is required. (Note
that, since e1 is a relative tolerance, the scaling of x is automatically taken into
account.)

e2 double
The absolute accuracy to which the position of a minimum is required. e2 should
be no smaller than 2ε.

a double
The lower bound a of the interval containing a minimum.

b double
The upper bound b of the interval containing a minimum.

maxcal integer
The maximum number of calls of funct to be allowed.

Details

R interface to the NAG Fortran routine E04BBF.

8 e04bb

Value

E1 double
If you set e1 to 0.0 (or to any value less than ε), e1 will be reset to the default
value

√
ε before starting the minimization process.

E2 double
If you set e2 to 0.0 (or to any value less than ε), e2 will be reset to the default
value

√
ε.

A double
An improved lower bound on the position of the minimum.

B double
An improved upper bound on the position of the minimum.

MAXCAL integer
The total number of times that funct was actually called.

X double
The estimated position of the minimum.

F double
The function value at the final point given in x.

G double
The value of the first derivative at the final point in x.

IFAIL integer
ifail = 0 unless the function detects an error or a warning has been flagged (see
the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04bbf.pdf

Examples

ifail <- 0
funct = function(xc) {

fc <- sin(xc)/xc
gc <- (cos(xc) - fc)/xc
list(FC = fc, GC = gc)

}

e1 <- 0

e2 <- 0

a <- 3.5

b <- 5

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04bbf.pdf

e04cb 9

maxcal <- 30

e04bb(funct, e1, e2, a, b, maxcal)

e04cb e04cb: Unconstrained minimization using simplex algorithm, function
of several variables using function values only

Description

e04cb minimizes a general function F (x) of n independent variables x = (x1x2 . . . xn)
T by the

Nelder and Mead simplex method (see [Nelder J A Mead R (1965)]). Derivatives of the function
need not be supplied.

Usage

e04cb(x, tolf, tolx, funct, monit, maxcal,
n = nrow(x))

Arguments

x double array
A guess at the position of the minimum. Note that the problem should be scaled
so that the values of the x[i] are of order unity.

tolf double
The error tolerable in the function values, in the following sense. If fi for
i = 1 . . . n + 1, are the individual function values at the vertices of the cur-
rent simplex, and if fm is the mean of these values, then you can request that
e04cb should terminate if√√√√ 1

n+ 1

n+1∑
i=1

(fi − fm)
2
< tolf .

tolx double
The error tolerable in the spatial values, in the following sense. If LV denotes
the ‘linearized’ volume of the current simplex, and if LV init denotes the ‘lin-
earized’ volume of the initial simplex, then you can request that e04cb should
terminate if

LV

LV init
< tolx.

funct function
funct must evaluate the function F at a specified point. It should be tested sepa-
rately before being used in conjunction with e04cb.
(FC) = funct(n,xc)

monit function
monit may be used to monitor the optimization process. It is invoked once every
iteration.
() = monit(fmin,fmax,sim,n,ncall,serror,vratio)

10 e04cb

maxcal integer
The maximum number of function evaluations to be allowed.

n integer: default = nrow(x)
n, the number of variables.

Details

R interface to the NAG Fortran routine E04CBF.

Value

X double array
The value of x corresponding to the function value in f.

F double
The lowest function value found.

IFAIL integer
ifail = 0 unless the function detects an error or a warning has been flagged (see
the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04cbf.pdf

Examples

ifail <- 0
funct = function(n, xc) {

fc <- exp(xc[1]) %*% (4 %*% xc[1] %*% (xc[1] + xc[2]) + 2 %*%
xc[2] %*% (xc[2] + 1) + 1)

list(FC = fc)
}
monit = function(fmin, fmax, sim, n, ncall, serror,

vratio) {

if (user(1) != 0) {

writeLines(toString(cat(sprintf("\nThere have been %d function calls\n",
ncall, "\n"))))

writeLines(toString(cat(sprintf("The smallest function value is %10.4f\n",
fmin, "\n"))))

writeLines(toString(cat(sprintf("The simplex is\n", "\n"))))

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04cbf.pdf

e04dg 11

writeLines(toString(cat(sprintf(sim, "\n"))))

writeLines(toString(cat(sprintf("The standard deviation in function values at the vertices of the simplex is %10.4f\n",
serror, "\n"))))

writeLines(toString(cat(sprintf("The linearized volume ratio of the current simplex to the starting one is %10.4f\n",
vratio, "\n"))))

}
list()

}

x <- matrix(c(-1, 1), nrow = 2, ncol = 1, byrow = TRUE)

tolf <- sqrt(x02aj()[["result"]])

tolx <- sqrt(tolf)

maxcal <- 100

user <- function(switch_integer) {
switch(switch_integer, 0)

}

e04cb(x, tolf, tolx, funct, monit, maxcal)

e04dg e04dg: Unconstrained minimum, preconditioned conjugate gradient
algorithm, function of several variables using first derivatives (com-
prehensive)

Description

e04dg minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,
limited memory quasi-Newton conjugate gradient method. First derivatives (or an ‘acceptable’
finite difference approximation to them) are required. It is intended for use on large scale problems.

Usage

e04dg(objfun, x, optlist,
n = nrow(x))

Arguments

objfun function
objfun must calculate the objective function F (x) and possibly its gradient as
well for a specified n element vector x.
(MODE,OBJF,OBJGRD) = objfun(mode,n,x,nstate)

12 e04dg

x double array
An initial estimate of the solution.

optlist options list
Optional parameters may be listed, as shown in the following table:

Name Type Default
Defaults
Estimated Optimal Function Value double
Function Precision double Default = ε0.9

Iteration Limit integer Default = max(50, 5n)
Iters
Itns
Linesearch Tolerance double Default = 0.9
List Default for e04dg = list
Nolist Default for e04dg = nolist
Maximum Step Length double Default = 1020

Optimality Tolerance double Default = ε0.8R
Print Level integer = 0
Start Objective Check at Variable integer Default = 1
Stop Objective Check at Variable integer Default = n
Verify Level integer Default = 0
Verify
Verify Gradients
Verify Objective Gradients

n integer: default = nrow(x)
n, the number of variables.

Details

R interface to the NAG Fortran routine E04DGF.

Value

ITER integer
The total number of iterations performed.

OBJF double
The value of the objective function at the final iterate.

OBJGRD double array
The gradient of the objective function at the final iterate (or its finite difference
approximation).

X double array
The final estimate of the solution.

IFAIL integer
ifail = 0 unless the function detects an error or a warning has been flagged (see
the Errors section in Fortran library documentation).

Author(s)

NAG

e04fc 13

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04dgf.pdf

Examples

optlist <- list()

ifail <- 0
objfun = function(mode, n, x, nstate) {

objgrd <- as.matrix(mat.or.vec(2, 1))
expx1 <- exp(x[1])
objf <- expx1 %*% (4 %*% x[1]^2 + 2 %*% x[2]^2 + 4 %*% x[1] %*%

x[2] + 2 %*% x[2] + 1)

if (mode == 2) {

objgrd[1] <- 4 %*% expx1 %*% (2 %*% x[1] + x[2]) + objf

objgrd[2] <- 2 %*% expx1 %*% (2 %*% x[2] + 2 %*% x[1] +
1)

}
else {

objgrd <- as.matrix(mat.or.vec(2, 1))
}
list(MODE = as.integer(mode), OBJF = objf, OBJGRD = as.matrix(objgrd))

}

x <- matrix(c(-1, 1), nrow = 2, ncol = 1, byrow = TRUE)

e04dg(objfun, x, optlist)

e04fc e04fc: Unconstrained minimum of a sum of squares, combined Gauss-
Newton and modified Newton algorithm using function values only
(comprehensive)

Description

e04fc is a comprehensive algorithm for finding an unconstrained minimum of a sum of squares of
m nonlinear functions in n variables (m ≥ n). No derivatives are required.

The function is intended for functions which have continuous first and second derivatives (although
it will usually work even if the derivatives have occasional discontinuities).

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04dgf.pdf

14 e04fc

Usage

e04fc(m, lsqfun, lsqmon, maxcal, x,
n = nrow(x),
iprint = 1,
eta = if (n==1) 0.0 else 0.5,
xtol = 0.0,
stepmx = 100000.0)

Arguments

m integer
lsqfun function

lsqfun must calculate the vector of values fi (x) at any point x. (However, if
you do not wish to calculate the residuals at a particular x, there is the option of
setting a argument to cause e04fc to terminate immediately.)
(IFLAG,FVEC) = lsqfun(iflag,m,n,xc)

lsqmon function
If iprint ≥ 0, you must supply lsqmon which is suitable for monitoring the
minimization process. lsqmon must not change the values of any of its argu-
ments.
() = lsqmon(m,n,xc,fvec,fjac,ldfjac,s,igrade,niter,nf)

maxcal integer
The limit you set on the number of times that lsqfun may be called by e04fc.
There will be an error exit (see the Errors section in Fortran library documenta-
tion) after maxcal calls of lsqfun.

x double array
x[j] must be set to a guess at the jth component of the position of the minimum
for j = 1 . . . n.

n integer: default = nrow(x)
The number m of residuals, fi (x), and the number n of variables, xj .

iprint integer: default = 1
The frequency with which lsqmon is to be called.

eta double: default = if (n==1) 0.0 else 0.5
Specifies how accurately the linear minimizations are to be performed. The min-
imum with respect to α(k) will be located more accurately for small values of
eta (say, 0.01) than for large values (say, 0.9). Although accurate linear min-
imizations will generally reduce the number of iterations performed by e04fc,
they will increase the number of calls of lsqfun made each iteration. On balance
it is usually more efficient to perform a low accuracy minimization.

xtol double: default = 0.0
The accuracy in x to which the solution is required.

stepmx double: default = 100000.0
An estimate of the Euclidean distance between the solution and the starting point
supplied by you. (For maximum efficiency, a slight overestimate is preferable.)
e04fc will ensure that, for each iteration,

n∑
j=1

(
x
(k)
j − x

(k−1)
j

)2
≤ (stepmx)

2 ,

e04fc 15

where k is the iteration number. Thus, if the problem has more than one solution,
e04fc is most likely to find the one nearest to the starting point. On difficult
problems, a realistic choice can prevent the sequence x(k) entering a region
where the problem is ill-behaved and can help avoid overflow in the evaluation
of F (x). However, an underestimate of stepmx can lead to inefficiency.

Details

R interface to the NAG Fortran routine E04FCF.

Value

X double array
The final point x(k). Thus, if ifail = 0 on exit, x[j] is the jth component of the
estimated position of the minimum.

FSUMSQ double
The value of F (x), the sum of squares of the residuals fi (x), at the final point
given in x.

FVEC double array
The value of the residual fi (x) at the final point given in x for i = 1 . . .m.

FJAC double array
The estimate of the first derivative ∂fi

∂xj
at the final point given in x for j = 1 . . . n

for i = 1 . . .m.

S double array
The singular values of the estimated Jacobian matrix at the final point. Thus s
may be useful as information about the structure of your problem.

V double array
The matrix V associated with the singular value decomposition

J = USV T

of the estimated Jacobian matrix at the final point, stored by columns. This
matrix may be useful for statistical purposes, since it is the matrix of orthonor-
malized eigenvectors of JTJ .

NITER integer
The number of iterations which have been performed in e04fc.

NF integer
The number of times that the residuals have been evaluated (i.e., number of calls
of lsqfun).

IFAIL integer
ifail = 0 unless the function detects an error or a warning has been flagged (see
the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04fcf.pdf

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04fcf.pdf

16 e04fc

Examples

ifail <- 0
lsqfun = function(iflag, m, n, xc) {

fvec <- as.matrix(mat.or.vec(m, 1))
for (i in c(1:m)) {

fvec[i] <- xc[1] + t[i, 1]/(xc[2] %*% t[i, 2] + xc[3] %*%
t[i, 3]) - y[i]

}
list(IFLAG = as.integer(iflag), FVEC = as.matrix(fvec))

}
lsqmon = function(m, n, xc, fvec, fjacc, ljc, s, igrade,

niter, nf) {

if (niter == 0) {

writeLines(toString(cat(sprintf(" Itn F evals SUMSQ \n",
"\n"))))

}
fsumsq <- crossprod(fvec, fvec)
writeLines(toString(cat(sprintf(" %3d %3d %12.8f\n",

niter, nf, fsumsq, "\n"))))

list()
}

m <- 15

n <- 3

maxcal <- 1200

x <- matrix(c(0.5, 1, 1.5), nrow = 3, ncol = 1, byrow = TRUE)

iw <- as.matrix(mat.or.vec(1, 1))

w <- as.matrix(mat.or.vec(6 %*% n + m %*% n + 2 %*%
m + n %*% ((n - 1)/2), 1))

y <- matrix(c(0.14, 0.18, 0.22, 0.25, 0.29, 0.32,
0.35, 0.39, 0.37, 0.58, 0.73, 0.96, 1.34, 2.1, 4.39), nrow = 1,
ncol = 15, byrow = TRUE)

t <- matrix(c(1, 15, 1, 2, 14, 2, 3, 13, 3, 4, 12,
4, 5, 11, 5, 6, 10, 6, 7, 9, 7, 8, 8, 8, 9, 7, 7, 10, 6,
6, 11, 5, 5, 12, 4, 4, 13, 3, 3, 14, 2, 2, 15, 1, 1), nrow = 15,
ncol = 3, byrow = TRUE)

e04fy 17

e04fc(m, lsqfun, lsqmon, maxcal, x)

e04fy e04fy: Unconstrained minimum of a sum of squares, combined Gauss-
Newton and modified Newton algorithm using function values only
(easy-to-use)

Description

e04fy is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of m
nonlinear functions in n variables (m ≥ n). No derivatives are required.
It is intended for functions which are continuous and which have continuous first and second deriva-
tives (although it will usually work even if the derivatives have occasional discontinuities).

Usage

e04fy(m, lsfun1, x,
n = nrow(x))

Arguments

m integer
lsfun1 function

You must supply this function to calculate the vector of values fi (x) at any
point x. It should be tested separately before being used in conjunction with
e04fy (see the E04 chapter introduction in the Fortran Library documentation).
(FVEC) = lsfun1(m,n,xc)

x double array
x[j] must be set to a guess at the jth component of the position of the minimum
for j = 1 . . . n.

n integer: default = nrow(x)
The number m of residuals, fi (x), and the number n of variables, xj .

Details

R interface to the NAG Fortran routine E04FYF.

Value

X double array
The lowest point found during the calculations. Thus, if ifail = 0 on exit, x[j]
is the jth component of the position of the minimum.

FSUMSQ double
The value of the sum of squares, F (x), corresponding to the final point stored
in x.

IFAIL integer
ifail = 0 unless the function detects an error or a warning has been flagged (see
the Errors section in Fortran library documentation).

18 e04gd

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04fyf.pdf

Examples

ifail <- 0
lsfun1 = function(m, n, xc) {

fvec <- as.matrix(mat.or.vec(m, 1))
for (i in c(1:m)) {

fvec[i] <- xc[1] + user(2)[i, 1]/(xc[2] %*% user(2)[i,
2] + xc[3] %*% user(2)[i, 3]) - user(1)[i]

}
list(FVEC = as.matrix(fvec))

}

m <- 15

x <- matrix(c(0.5, 1, 1.5), nrow = 3, ncol = 1, byrow = TRUE)

y <- matrix(c(0.14, 0.18, 0.22, 0.25, 0.29, 0.32,
0.35, 0.39, 0.37, 0.58, 0.73, 0.96, 1.34, 2.1, 4.39), nrow = 1,
ncol = 15, byrow = TRUE)

t <- matrix(c(1, 15, 1, 2, 14, 2, 3, 13, 3, 4, 12,
4, 5, 11, 5, 6, 10, 6, 7, 9, 7, 8, 8, 8, 9, 7, 7, 10, 6,
6, 11, 5, 5, 12, 4, 4, 13, 3, 3, 14, 2, 2, 15, 1, 1), nrow = 15,
ncol = 3, byrow = TRUE)

user <- function(switch_integer) {
switch(switch_integer, y, t, 3)

}

e04fy(m, lsfun1, x)

e04gd e04gd: Unconstrained minimum of a sum of squares, combined
Gauss-Newton and modified Newton algorithm using first derivatives
(comprehensive)

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04fyf.pdf

e04gd 19

Description

e04gd is a comprehensive modified Gauss-Newton algorithm for finding an unconstrained minimum
of a sum of squares of m nonlinear functions in n variables (m ≥ n). First derivatives are required.

The function is intended for functions which have continuous first and second derivatives (although
it will usually work even if the derivatives have occasional discontinuities).

Usage

e04gd(m, lsqfun, lsqmon, maxcal, xtol, x,
n = nrow(x),
iprint = 1,
eta = if (n==1) 0.0 else 0.5,
stepmx = 100000.0)

Arguments

m integer

lsqfun function
lsqfun must calculate the vector of values fi (x) and Jacobian matrix of first
derivatives ∂fi

∂xj
at any point x. (However, if you do not wish to calculate the

residuals or first derivatives at a particular x, there is the option of setting a
argument to cause e04gd to terminate immediately.)
(IFLAG,FVEC,FJAC) = lsqfun(iflag,m,n,xc,ldfjac)

lsqmon function
If iprint ≥ 0, you must supply lsqmon which is suitable for monitoring the
minimization process. lsqmon must not change the values of any of its argu-
ments.
() = lsqmon(m,n,xc,fvec,fjac,ldfjac,s,igrade,niter,nf)

maxcal integer
Enables you to limit the number of times that lsqfun is called by e04gd. There
will be an error exit (see the Errors section in Fortran library documentation)
after maxcal evaluations of the residuals (i.e., calls of lsqfun with iflag set to
2). It should be borne in mind that, in addition to the calls of lsqfun which are
limited directly by maxcal, there will be calls of lsqfun (with iflag set to 1) to
evaluate only first derivatives.

xtol double
The accuracy in x to which the solution is required.

x double array
x[j] must be set to a guess at the jth component of the position of the minimum
for j = 1 . . . n.

n integer: default = nrow(x)
The number m of residuals, fi (x), and the number n of variables, xj .

iprint integer: default = 1
The frequency with which lsqmon is to be called.
iprint > 0: lsqmon is called once every iprint iterations and just before exit
from e04gd.
iprint = 0: lsqmon is just called at the final point.
iprint < 0: lsqmon is not called at all.

20 e04gd

eta double: default = if (n==1) 0.0 else 0.5
Every iteration of e04gd involves a linear minimization, i.e., minimization of
F
(
x(k) + α(k)p(k)

)
with respect to α(k). eta specifies how accurately these

linear minimizations are to be performed. The minimum with respect to α(k)

will be located more accurately for small values of eta (say, 0.01) than for large
values (say, 0.9).

stepmx double: default = 100000.0
An estimate of the Euclidean distance between the solution and the starting point
supplied by you. (For maximum efficiency, a slight overestimate is preferable.)
e04gd will ensure that, for each iteration,

n∑
j=1

(
x
(k)
j − x

(k−1)
j

)2
≤ (stepmx)

2

where k is the iteration number. Thus, if the problem has more than one solution,
e04gd is most likely to find the one nearest to the starting point. On difficult
problems, a realistic choice can prevent the sequence of x(k) entering a region
where the problem is ill-behaved and can help avoid overflow in the evaluation
of F (x). However, an underestimate of stepmx can lead to inefficiency.

Details

R interface to the NAG Fortran routine E04GDF.

Value

X double array
The final point x(k). Thus, if ifail = 0 on exit, x[j] is the jth component of the
estimated position of the minimum.

FSUMSQ double
The value of F (x), the sum of squares of the residuals fi (x), at the final point
given in x.

FVEC double array
The value of the residual fi (x) at the final point given in x for i = 1 . . .m.

FJAC double array
The value of the first derivative ∂fi

∂xj
evaluated at the final point given in x for

j = 1 . . . n for i = 1 . . .m.

S double array
The singular values of the Jacobian matrix at the final point. Thus s may be
useful as information about the structure of your problem.

V double array
The matrix V associated with the singular value decomposition

J = USV T

of the Jacobian matrix at the final point, stored by columns. This matrix may be
useful for statistical purposes, since it is the matrix of orthonormalized eigen-
vectors of JTJ .

NITER integer
The number of iterations which have been performed in e04gd.

e04gd 21

NF integer
The number of times that the residuals have been evaluated (i.e., number of calls
of lsqfun with iflag set to 2).

IFAIL integer
ifail = 0 unless the function detects an error or a warning has been flagged (see
the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04gdf.pdf

Examples

ifail <- 0
lsqfun = function(iflag, m, n, xc, ljc) {

fvec <- as.matrix(mat.or.vec(m, 1))
fjacc <- as.matrix(mat.or.vec(ljc, n))
for (i in c(1:m)) {

denom <- xc[2] %*% t[i, 2] + xc[3] %*% t[i, 3]

if (iflag != 1) {

fvec[i] <- xc[1] + t[i, 1]/denom - y[i]

}
if (iflag != 0) {

fjacc[i, 1] <- 1

dummy <- -1/(denom %*% denom)

fjacc[i, 2] <- t[i, 1] %*% t[i, 2] %*% dummy

fjacc[i, 3] <- t[i, 1] %*% t[i, 3] %*% dummy

}
}
list(IFLAG = as.integer(iflag), FVEC = as.matrix(fvec), FJAC = as.matrix(fjacc))

}
lsqmon = function(m, n, xc, fvec, fjacc, ljc, s, igrade,

niter, nf) {

list()
}

m <- 15

maxcal <- 150

xtol <- 1.05418557512311e-07

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04gdf.pdf

22 e04gy

x <- matrix(c(0.5, 1, 1.5), nrow = 3, ncol = 1, byrow = TRUE)

iw <- matrix(c(0), nrow = 1, ncol = 1, byrow = TRUE)

w <- as.matrix(mat.or.vec(105, 1))

y <- matrix(c(0.14, 0.18, 0.22, 0.25, 0.29, 0.32,
0.35, 0.39, 0.37, 0.58, 0.73, 0.96, 1.34, 2.1, 4.39), nrow = 1,
ncol = 15, byrow = TRUE)

t <- matrix(c(1, 15, 1, 2, 14, 2, 3, 13, 3, 4, 12,
4, 5, 11, 5, 6, 10, 6, 7, 9, 7, 8, 8, 8, 9, 7, 7, 10, 6,
6, 11, 5, 5, 12, 4, 4, 13, 3, 3, 14, 2, 2, 15, 1, 1), nrow = 15,
ncol = 3, byrow = TRUE)

e04gd(m, lsqfun, lsqmon, maxcal, xtol, x)

e04gy e04gy: Unconstrained minimum of a sum of squares, combined Gauss-
Newton and quasi-Newton algorithm, using first derivatives (easy-to-
use)

Description

e04gy is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of a sum of
squares of m nonlinear functions in n variables (m ≥ n). First derivatives are required.

It is intended for functions which are continuous and which have continuous first and second deriva-
tives (although it will usually work even if the derivatives have occasional discontinuities).

Usage

e04gy(m, lsfun2, x,
n = nrow(x))

Arguments

m integer

lsfun2 function
You must supply this function to calculate the vector of values fi (x) and the
Jacobian matrix of first derivatives ∂fi

∂xj
at any point x. It should be tested sep-

arately before being used in conjunction with e04gy (see the E04 chapter intro-
duction in the Fortran Library documentation).
(FVEC,FJAC) = lsfun2(m,n,xc,ldfjac)

e04gy 23

x double array
x[j] must be set to a guess at the jth component of the position of the minimum
for j = 1 . . . n. The function checks the first derivatives calculated by lsfun2 at
the starting point and so is more likely to detect an error in your function if the
initial x[j] are nonzero and mutually distinct.

n integer: default = nrow(x)
The number m of residuals, fi (x), and the number n of variables, xj .

Details

R interface to the NAG Fortran routine E04GYF.

Value

X double array
The lowest point found during the calculations. Thus, if ifail = 0 on exit, x[j]
is the jth component of the position of the minimum.

FSUMSQ double
The value of the sum of squares, F (x), corresponding to the final point stored
in x.

IFAIL integer
ifail = 0 unless the function detects an error or a warning has been flagged (see
the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04gyf.pdf

Examples

ifail <- 0
lsfun2 = function(m, n, xc, ljc) {

fvec <- as.matrix(mat.or.vec(m, 1))
fjacc <- as.matrix(mat.or.vec(ljc, n))
for (i in c(1:m)) {

denom <- xc[2] %*% user(2)[i, 2] + xc[3] %*% user(2)[i,
3]

fvec[i] <- xc[1] + user(2)[i, 1]/denom - user(1)[i]

fjacc[i, 1] <- 1

dummy <- -1/(denom %*% denom)

fjacc[i, 2] <- user(2)[i, 1] %*% user(2)[i, 2] %*% dummy

fjacc[i, 3] <- user(2)[i, 1] %*% user(2)[i, 3] %*% dummy
}

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04gyf.pdf

24 e04gz

list(FVEC = as.matrix(fvec), FJAC = as.matrix(fjacc))
}

m <- 15

x <- matrix(c(0.5, 1, 1.5), nrow = 3, ncol = 1, byrow = TRUE)

y <- matrix(c(0.14, 0.18, 0.22, 0.25, 0.29, 0.32,
0.35, 0.39, 0.37, 0.58, 0.73, 0.96, 1.34, 2.1, 4.39), nrow = 1,
ncol = 15, byrow = TRUE)

t <- matrix(c(1, 15, 1, 2, 14, 2, 3, 13, 3, 4, 12,
4, 5, 11, 5, 6, 10, 6, 7, 9, 7, 8, 8, 8, 9, 7, 7, 10, 6,
6, 11, 5, 5, 12, 4, 4, 13, 3, 3, 14, 2, 2, 15, 1, 1), nrow = 15,
ncol = 3, byrow = TRUE)

user <- function(switch_integer) {
switch(switch_integer, y, t, 3)

}

e04gy(m, lsfun2, x)

e04gz e04gz: Unconstrained minimum of a sum of squares, combined Gauss-
Newton and modified Newton algorithm using first derivatives (easy-
to-use)

Description

e04gz is an easy-to-use modified Gauss-Newton algorithm for finding an unconstrained minimum
of a sum of squares of m nonlinear functions in n variables (m ≥ n). First derivatives are required.

It is intended for functions which are continuous and which have continuous first and second deriva-
tives (although it will usually work even if the derivatives have occasional discontinuities).

Usage

e04gz(m, lsfun2, x,
n = nrow(x))

Arguments

m integer
lsfun2 function

You must supply this function to calculate the vector of values fi (x) and the
Jacobian matrix of first derivatives ∂fi

∂xj
at any point x. It should be tested sepa-

rately before being used in conjunction with e04gz.
(FVEC,FJAC) = lsfun2(m,n,xc,ldfjac)

e04gz 25

x double array
x[j] must be set to a guess at the jth component of the position of the minimum
for j = 1 . . . n. The function checks the first derivatives calculated by lsfun2 at
the starting point and so is more likely to detect any error in your functions if
the initial x[j] are nonzero and mutually distinct.

n integer: default = nrow(x)
The number m of residuals, fi (x), and the number n of variables, xj .

Details

R interface to the NAG Fortran routine E04GZF.

Value

X double array
The lowest point found during the calculations. Thus, if ifail = 0 on exit, x[j]
is the jth component of the position of the minimum.

FSUMSQ double
The value of the sum of squares, F (x), corresponding to the final point stored
in x.

IFAIL integer
ifail = 0 unless the function detects an error or a warning has been flagged (see
the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04gzf.pdf

Examples

ifail <- 0
lsfun2 = function(m, n, xc, ljc) {

fvec <- as.matrix(mat.or.vec(m, 1))
fjacc <- as.matrix(mat.or.vec(ljc, n))
for (i in c(1:m)) {

denom <- xc[2] %*% user(2)[i, 2] + xc[3] %*% user(2)[i,
3]

fvec[i] <- xc[1] + user(2)[i, 1]/denom - user(1)[i]

fjacc[i, 1] <- 1

dummy <- -1/(denom %*% denom)

fjacc[i, 2] <- user(2)[i, 1] %*% user(2)[i, 2] %*% dummy

fjacc[i, 3] <- user(2)[i, 1] %*% user(2)[i, 3] %*% dummy
}

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04gzf.pdf

26 e04hc

list(FVEC = as.matrix(fvec), FJAC = as.matrix(fjacc))
}

m <- 15

x <- matrix(c(0.5, 1, 1.5), nrow = 3, ncol = 1, byrow = TRUE)

y <- matrix(c(0.14, 0.18, 0.22, 0.25, 0.29, 0.32,
0.35, 0.39, 0.37, 0.58, 0.73, 0.96, 1.34, 2.1, 4.39), nrow = 1,
ncol = 15, byrow = TRUE)

t <- matrix(c(1, 15, 1, 2, 14, 2, 3, 13, 3, 4, 12,
4, 5, 11, 5, 6, 10, 6, 7, 9, 7, 8, 8, 8, 9, 7, 7, 10, 6,
6, 11, 5, 5, 12, 4, 4, 13, 3, 3, 14, 2, 2, 15, 1, 1), nrow = 15,
ncol = 3, byrow = TRUE)

user <- function(switch_integer) {
switch(switch_integer, y, t, 3)

}

e04gz(m, lsfun2, x)

e04hc e04hc: Check user’s function for calculating first derivatives of func-
tion

Description

e04hc checks that a function for evaluating an objective function and its first derivatives produces
derivative values which are consistent with the function values calculated.

Usage

e04hc(funct, x,
n = nrow(x))

Arguments

funct function
funct must evaluate the function and its first derivatives at a given point. (The
minimization functions mentioned in the Description in Fortran library docu-
mentation gives you the option of resetting arguments of funct to cause the min-
imization process to terminate immediately. e04hc will also terminate imme-
diately, without finishing the checking process, if the argument in question is
reset.)
(IFLAG,FC,GC) = funct(iflag,n,xc)

e04hc 27

x double array
x[j] for j = 1 . . . n, must be set to the coordinates of a suitable point at which to
check the derivatives calculated by funct. ‘Obvious’ settings, such as 0.0or1.0,
should not be used since, at such particular points, incorrect terms may take
correct values (particularly zero), so that errors could go undetected. Similarly,
it is preferable that no two elements of x should be the same.

n integer: default = nrow(x)
The number n of independent variables in the objective function.

Details

R interface to the NAG Fortran routine E04HCF.

Value

F double
Unless you set iflag negative in the first call of funct, f contains the value of the
objective function F (x) at the point given by you in x.

G double array
Unless you set iflag negative in the first call of funct, g[j] contains the value of
the derivative ∂F

∂xj
at the point given in x, as calculated by funct for j = 1 . . . n.

IFAIL integer
ifail = 0 unless the function detects an error or a warning has been flagged (see
the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04hcf.pdf

Examples

ifail <- 0
funct = function(iflag, n, xc) {

gc <- as.matrix(mat.or.vec(n, 1))
fc <- 0

if (iflag != 1) {

fc <- (xc[1] + 10 %*% xc[2])^2 + 5 %*% (xc[3] - xc[4])^2 +
(xc[2] - 2 %*% xc[3])^4 + 10 %*% (xc[1] - xc[4])^4

}

if (iflag != 0) {

gc[1] <- 2 %*% (xc[1] + 10 %*% xc[2]) + 40 %*% (xc[1] -
xc[4])^3

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04hcf.pdf

28 e04hd

gc[2] <- 20 %*% (xc[1] + 10 %*% xc[2]) + 4 %*% (xc[2] -
2 %*% xc[3])^3

gc[3] <- 10 %*% (xc[3] - xc[4]) - 8 %*% (xc[2] - 2 %*%
xc[3])^3

gc[4] <- 10 %*% (xc[4] - xc[3]) - 40 %*% (xc[1] - xc[4])^3

}
list(IFLAG = as.integer(iflag), FC = fc, GC = as.matrix(gc))

}

x <- matrix(c(1.46, -0.82, 0.57, 1.21), nrow = 4,
ncol = 1, byrow = TRUE)

e04hc(funct, x)

e04hd e04hd: Check user’s function for calculating second derivatives of
function

Description

e04hd checks that a function for calculating second derivatives of an objective function is consistent
with a function for calculating the corresponding first derivatives.

Usage

e04hd(funct, h, x, lh,
n = nrow(x))

Arguments

funct function
funct must evaluate the function and its first derivatives at a given point. (e04lb
gives you the option of resetting arguments of funct to cause the minimization
process to terminate immediately. e04hd will also terminate immediately, with-
out finishing the checking process, if the argument in question is reset.)
(IFLAG,FC,GC) = funct(iflag,n,xc)

h function
h must evaluate the second derivatives of the function at a given point. (As with
funct, a argument can be set to cause immediate termination.)
(IFLAG,FHESL,FHESD) = h(iflag,n,xc,lh,fhesd)

x double array
x[j] for j = 1 . . . n must contain the coordinates of a suitable point at which to
check the derivatives calculated by funct. ‘Obvious’ settings, such as 0.0or1.0,

e04hd 29

should not be used since, at such particular points, incorrect terms may take
correct values (particularly zero), so that errors could go undetected. Similarly,
it is advisable that no two elements of x should be the same.

lh integer

n integer: default = nrow(x)
The number n of independent variables in the objective function.

Details

R interface to the NAG Fortran routine E04HDF.

Value

G double array
Unless you set iflag negative in the first call of funct, g[j] contains the value
of the first derivative ∂F

∂xj
at the point given in x, as calculated by funct for

j = 1 . . . n.

HESL double array
Unless you set iflag negative in h, hesl contains the strict lower triangle of the
second derivative matrix of F , as evaluated by h at the point given in x, stored
by rows.

HESD double array
Unless you set iflag negative in h, hesd contains the diagonal elements of the
second derivative matrix of F , as evaluated by h at the point given in x.

IFAIL integer
ifail = 0 unless the function detects an error or a warning has been flagged (see
the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04hdf.pdf

Examples

ifail <- 0
funct = function(iflag, n, xc) {

gc <- as.matrix(mat.or.vec(n, 1))
fc <- (xc[1] + 10 %*% xc[2])^2 + 5 %*% (xc[3] - xc[4])^2 +

(xc[2] - 2 %*% xc[3])^4 + 10 %*% (xc[1] - xc[4])^4
gc[1] <- 2 %*% (xc[1] + 10 %*% xc[2]) + 40 %*% (xc[1] - xc[4])^3
gc[2] <- 20 %*% (xc[1] + 10 %*% xc[2]) + 4 %*% (xc[2] - 2 %*%

xc[3])^3
gc[3] <- 10 %*% (xc[3] - xc[4]) - 8 %*% (xc[2] - 2 %*% xc[3])^3
gc[4] <- 10 %*% (xc[4] - xc[3]) - 40 %*% (xc[1] - xc[4])^3
list(IFLAG = as.integer(iflag), FC = fc, GC = as.matrix(gc))

}

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04hdf.pdf

30 e04he

hess = function(iflag, n, xc, lh, fhesd) {

fhesl <- as.matrix(mat.or.vec(lh, 1))
fhesd <- as.matrix(mat.or.vec(n, 1))
fhesd[1] <- 2 + 120 %*% (xc[1] - xc[4])^2
fhesd[2] <- 200 + 12 %*% (xc[2] - 2 %*% xc[3])^2
fhesd[3] <- 10 + 48 %*% (xc[2] - 2 %*% xc[3])^2
fhesd[4] <- 10 + 120 %*% (xc[1] - xc[4])^2
fhesl[1] <- 20
fhesl[2] <- 0
fhesl[3] <- -24 %*% (xc[2] - 2 %*% xc[3])^2
fhesl[4] <- -120 %*% (xc[1] - xc[4])^2
fhesl[5] <- 0
fhesl[6] <- -10
list(IFLAG = as.integer(iflag), FHESL = as.matrix(fhesl),

FHESD = as.matrix(fhesd))
}

x <- matrix(c(1.46, -0.82, 0.57, 1.21), nrow = 4,
ncol = 1, byrow = TRUE)

lh <- 6

iw <- matrix(c(0), nrow = 1, ncol = 1, byrow = TRUE)

w <- as.matrix(mat.or.vec(20, 1))

e04hd(funct, hess, x, lh)

e04he e04he: Unconstrained minimum of a sum of squares, combined Gauss-
Newton and modified Newton algorithm, using second derivatives
(comprehensive)

Description

e04he is a comprehensive modified Gauss-Newton algorithm for finding an unconstrained minimum
of a sum of squares of m nonlinear functions in n variables (m ≥ n). First and second derivatives
are required.

The function is intended for functions which have continuous first and second derivatives (although
it will usually work even if the derivatives have occasional discontinuities).

Usage

e04he(m, lsqfun, lsqhes, lsqmon, maxcal, xtol, x,
n = nrow(x),
iprint = 1,
eta = if (n==1) 0.0 else 0.5,
stepmx = 100000.0)

e04he 31

Arguments

m integer
lsqfun function

lsqfun must calculate the vector of values fi (x) and Jacobian matrix of first
derivatives ∂fi

∂xj
at any point x. (However, if you do not wish to calculate the

residuals or first derivatives at a particular x, there is the option of setting a
argument to cause e04he to terminate immediately.)
(IFLAG,FVEC,FJAC) = lsqfun(iflag,m,n,xc,ldfjac)

lsqhes function
lsqhes must calculate the elements of the symmetric matrix

B (x) =

m∑
i=1

fi (x)Gi (x) ,

at any point x, where Gi (x) is the Hessian matrix of fi (x). (As with lsqfun,
there is the option of causing e04he to terminate immediately.)
(IFLAG,B) = lsqhes(iflag,m,n,fvec,xc,lb)

lsqmon function
If iprint ≥ 0, you must supply lsqmon which is suitable for monitoring the
minimization process. lsqmon must not change the values of any of its argu-
ments.
() = lsqmon(m,n,xc,fvec,fjac,ldfjac,s,igrade,niter,nf)

maxcal integer
This argument is present so as to enable you to limit the number of times that
lsqfun is called by e04he. There will be an error exit (see the Errors section in
Fortran library documentation) after maxcal calls of lsqfun.

xtol double
The accuracy in x to which the solution is required.

x double array
x[j] must be set to a guess at the jth component of the position of the minimum
for j = 1 . . . n.

n integer: default = nrow(x)
The number m of residuals, fi (x), and the number n of variables, xj .

iprint integer: default = 1
Specifies the frequency with which lsqmon is to be called.
iprint > 0: lsqmon is called once every iprint iterations and just before exit
from e04he.
iprint = 0: lsqmon is just called at the final point.
iprint < 0: lsqmon is not called at all.

eta double: default = if (n==1) 0.0 else 0.5
Every iteration of e04he involves a linear minimization (i.e., minimization of
F
(
x(k) + α(k)p(k)

)
with respect to α(k)). eta must lie in the range 0.0 ≤ eta <

1.0, and specifies how accurately these linear minimizations are to be performed.
The minimum with respect to α(k) will be located more accurately for small
values of eta (say, 0.01) than for large values (say, 0.9).

stepmx double: default = 100000.0
An estimate of the Euclidean distance between the solution and the starting point
supplied by you. (For maximum efficiency, a slight overestimate is preferable.)

32 e04he

Details

R interface to the NAG Fortran routine E04HEF.

Value

X double array

The final point x(k). Thus, if ifail = 0 on exit, x[j] is the jth component of the
estimated position of the minimum.

FSUMSQ double

The value of F (x), the sum of squares of the residuals fi (x), at the final point
given in x.

FVEC double array

The value of the residual fi (x) at the final point given in x for i = 1 . . .m.

FJAC double array

The value of the first derivative ∂fi
∂xj

evaluated at the final point given in x for
j = 1 . . . n for i = 1 . . .m.

S double array

The singular values of the Jacobian matrix at the final point. Thus s may be
useful as information about the structure of your problem.

V double array

The matrix V associated with the singular value decomposition

J = USV T

of the Jacobian matrix at the final point, stored by columns. This matrix may be
useful for statistical purposes, since it is the matrix of orthonormalized eigen-
vectors of JTJ .

NITER integer

The number of iterations which have been performed in e04he.

NF integer

The number of times that the residuals and Jacobian matrix have been evaluated
(i.e., number of calls of lsqfun).

IFAIL integer

ifail = 0 unless the function detects an error or a warning has been flagged (see
the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04hef.pdf

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04hef.pdf

e04he 33

Examples

ifail <- 0
lsqfun = function(iflag, m, n, xc, ljc) {

fvec <- as.matrix(mat.or.vec(m, 1))
fjacc <- as.matrix(mat.or.vec(ljc, n))
for (i in c(1:m)) {

denom <- xc[2] %*% t[i, 2] + xc[3] %*% t[i, 3]

fvec[i] <- xc[1] + t[i, 1]/denom - y[i]

if (iflag != 0) {

fjacc[i, 1] <- 1

dummy <- -1/(denom %*% denom)

fjacc[i, 2] <- t[i, 1] %*% t[i, 2] %*% dummy

fjacc[i, 3] <- t[i, 1] %*% t[i, 3] %*% dummy

}
}
list(IFLAG = as.integer(iflag), FVEC = as.matrix(fvec), FJAC = as.matrix(fjacc))

}
lsqhes = function(iflag, m, n, fvec, xc, lb) {

b <- as.matrix(mat.or.vec(lb, 1))
b[1] <- 0
b[2] <- 0
sum22 <- 0
sum32 <- 0
sum33 <- 0
for (i in c(1:m)) {

dummy <- 2 %*% t[i, 1]/(xc[2] %*% t[i, 2] + xc[3] %*%
t[i, 3])^3

sum22 <- sum22 + fvec[i] %*% dummy %*% t[i, 2]^2

sum32 <- sum32 + fvec[i] %*% dummy %*% t[i, 2] %*% t[i,
3]

sum33 <- sum33 + fvec[i] %*% dummy %*% t[i, 3]^2
}
b[3] <- sum22
b[4] <- 0
b[5] <- sum32
b[6] <- sum33
list(IFLAG = as.integer(iflag), B = as.matrix(b))

}
lsqmon = function(m, n, xc, fvec, fjacc, ljc, s, igrade,

niter, nf) {

list()
}

34 e04hy

m <- 15

maxcal <- 150

xtol <- 1.05418557512311e-07

x <- matrix(c(0.5, 1, 1.5), nrow = 3, ncol = 1, byrow = TRUE)

iw <- matrix(c(0), nrow = 1, ncol = 1, byrow = TRUE)

w <- as.matrix(mat.or.vec(105, 1))

y <- matrix(c(0.14, 0.18, 0.22, 0.25, 0.29, 0.32,
0.35, 0.39, 0.37, 0.58, 0.73, 0.96, 1.34, 2.1, 4.39), nrow = 1,
ncol = 15, byrow = TRUE)

t <- matrix(c(1, 15, 1, 2, 14, 2, 3, 13, 3, 4, 12,
4, 5, 11, 5, 6, 10, 6, 7, 9, 7, 8, 8, 8, 9, 7, 7, 10, 6,
6, 11, 5, 5, 12, 4, 4, 13, 3, 3, 14, 2, 2, 15, 1, 1), nrow = 15,
ncol = 3, byrow = TRUE)

e04he(m, lsqfun, lsqhes, lsqmon, maxcal, xtol, x)

e04hy e04hy: Unconstrained minimum of a sum of squares, combined Gauss-
Newton and modified Newton algorithm, using second derivatives
(easy-to-use)

Description

e04hy is an easy-to-use modified Gauss-Newton algorithm for finding an unconstrained minimum
of a sum of squares of m nonlinear functions in n variables (m ≥ n). First and second derivatives
are required.

It is intended for functions which are continuous and which have continuous first and second deriva-
tives (although it will usually work even if the derivatives have occasional discontinuities).

Usage

e04hy(m, lsfun2, lshes2, x,
n = nrow(x))

e04hy 35

Arguments

m integer

lsfun2 function
You must supply this function to calculate the vector of values fi (x) and the
Jacobian matrix of first derivatives ∂fi

∂xj
at any point x. It should be tested sep-

arately before being used in conjunction with e04hy (see the E04 chapter intro-
duction in the Fortran Library documentation).
(FVEC,FJAC) = lsfun2(m,n,xc,ldfjac)

lshes2 function
You must supply this function to calculate the elements of the symmetric matrix

B (x) =

m∑
i=1

fi (x)Gi (x) ,

at any point x, where Gi (x) is the Hessian matrix of fi (x). It should be tested
separately before being used in conjunction with e04hy (see the E04 chapter
introduction in the Fortran Library documentation).
(B) = lshes2(m,n,fvec,xc,lb)

x double array
x[j] must be set to a guess at the jth component of the position of the minimum
for j = 1 . . . n. The function checks lsfun2 and lshes2 at the starting point
and so is more likely to detect any error in your functions if the initial x[j] are
nonzero and mutually distinct.

n integer: default = nrow(x)
The number m of residuals, fi (x), and the number n of variables, xj .

Details

R interface to the NAG Fortran routine E04HYF.

Value

X double array
The lowest point found during the calculations. Thus, if ifail = 0 on exit, x[j]
is the jth component of the position of the minimum.

FSUMSQ double
The value of the sum of squares, F (x), corresponding to the final point stored
in x.

IFAIL integer
ifail = 0 unless the function detects an error or a warning has been flagged (see
the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04hyf.pdf

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04hyf.pdf

36 e04hy

Examples

ifail <- 0
lsfun2 = function(m, n, xc, ljc) {

fvec <- as.matrix(mat.or.vec(m, 1))
fjacc <- as.matrix(mat.or.vec(ljc, n))
for (i in c(1:m)) {

denom <- xc[2] %*% user(2)[i, 2] + xc[3] %*% user(2)[i,
3]

fvec[i] <- xc[1] + user(2)[i, 1]/denom - user(1)[i]

fjacc[i, 1] <- 1

dummy <- -1/(denom %*% denom)

fjacc[i, 2] <- user(2)[i, 1] %*% user(2)[i, 2] %*% dummy

fjacc[i, 3] <- user(2)[i, 1] %*% user(2)[i, 3] %*% dummy
}
list(FVEC = as.matrix(fvec), FJAC = as.matrix(fjacc))

}
lshes2 = function(m, n, fvec, xc, lb) {

b <- as.matrix(mat.or.vec(lb, 1))
sum22 <- 0
sum32 <- 0
sum33 <- 0
for (i in c(1:m)) {

dummy <- 2 %*% user(2)[i, 1]/(xc[2] %*% user(2)[i, 2] +
xc[3] %*% user(2)[i, 3])^3

sum22 <- sum22 + fvec[i] %*% dummy %*% user(2)[i, 2]^2

sum32 <- sum32 + fvec[i] %*% dummy %*% user(2)[i, 2] %*%
user(2)[i, 3]

sum33 <- sum33 + fvec[i] %*% dummy %*% user(2)[i, 3]^2
}
b[3] <- sum22
b[5] <- sum32
b[6] <- sum33
list(B = as.matrix(b))

}

m <- 15

x <- matrix(c(0.5, 1, 1.5), nrow = 3, ncol = 1, byrow = TRUE)

x <- matrix(c(0.5, 1, 1.5), nrow = 3, ncol = 1, byrow = TRUE)

e04jc 37

y <- matrix(c(0.14, 0.18, 0.22, 0.25, 0.29, 0.32,
0.35, 0.39, 0.37, 0.58, 0.73, 0.96, 1.34, 2.1, 4.39), nrow = 1,
ncol = 15, byrow = TRUE)

t <- matrix(c(1, 15, 1, 2, 14, 2, 3, 13, 3, 4, 12,
4, 5, 11, 5, 6, 10, 6, 7, 9, 7, 8, 8, 8, 9, 7, 7, 10, 6,
6, 11, 5, 5, 12, 4, 4, 13, 3, 3, 14, 2, 2, 15, 1, 1), nrow = 15,
ncol = 3, byrow = TRUE)

user <- function(switch_integer) {
switch(switch_integer, y, t, 3)

}

e04hy(m, lsfun2, lshes2, x)

e04jc e04jc: Minimum by quadratic approximation, function of several vari-
ables, simple bounds, using function values only

Description

e04jc is an easy-to-use algorithm that uses methods of quadratic approximation to find a minimum
of an objective function F over x ∈ Rn, subject to fixed lower and upper bounds on the independent
variables x1, x2, . . . , xn. Derivatives of F are not required.

The function is intended for functions that are continuous and that have continuous first and second
derivatives (although it will usually work even if the derivatives have occasional discontinuities).
Efficiency is maintained for large n.

Usage

e04jc(objfun, npt, x, bl, bu, rhobeg, rhoend, monfun, maxcal,
n = nrow(x))

Arguments

objfun function
objfun must evaluate the objective function F at a specified vector x.
(F,INFORM) = objfun(n,x)

npt integer
m, the number of interpolation conditions imposed on the quadratic approxima-
tion at each iteration.

x double array
An estimate of the position of the minimum. If any component is out-of-bounds
it is replaced internally by the bound it violates.

bl double array

38 e04jc

bu double array

The fixed vectors of bounds: the lower bounds ` and the upper bounds u, respec-
tively. To signify that a variable is unbounded you should choose a large scalar
r appropriate to your problem, then set the lower bound on that variable to −r
and the upper bound to r. For well-scaled problems r = r

1
4
max may be suitable,

where rmax denotes the largest positive model number (see x02al).

rhobeg double

An initial lower bound on the value of the trust-region radius.

rhoend double

A final lower bound on the value of the trust-region radius.

monfun function

monfun may be used to monitor the optimization process. It is invoked every
time a new trust-region radius is chosen.

(INFORM) = monfun(n,nf,x,f,rho)

maxcal integer

The maximum permitted number of calls to objfun.

n integer: default = nrow(x)

n, the number of independent variables.

Details

R interface to the NAG Fortran routine E04JCF.

Value

X double array

The lowest point found during the calculations. Thus, if ifail = 0 on exit, x is
the position of the minimum.

F double

The function value at the lowest point found (x).

NF integer

Unless ifail = 1, ifail = −999 on exit, the total number of calls made to objfun.

IFAIL integer

ifail = 0 unless the function detects an error or a warning has been flagged (see
the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04jcf.pdf

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04jcf.pdf

e04jc 39

Examples

ifail <- 0
maxcal <- 500

rhobeg <- 0.1

rhoend <- 1e-06

n <- 4

npt <- 2 * n + 1

infbnd <- x02al()[["result"]]^0.25

bl <- matrix(c(1, -2, -infbnd, 1), nrow = 4, ncol = 1,
byrow = TRUE)

bu <- matrix(c(3, 0, infbnd, 3), nrow = 4, ncol = 1,
byrow = TRUE)

x <- matrix(c(3, -1, 0, 1), nrow = 4, ncol = 1, byrow = TRUE)

e04jc_objfun = function(n, x) {
inform <- 0

f <- (x[1] + 10 %*% x[2])^2 + 5 %*% (x[3] - x[4])^2 + (x[2] -
2 %*% x[3])^4 + 10 %*% (x[1] - x[4])^4

list(F = f, INFORM = as.integer(inform))

}
e04jc_monfun = function(n, nf, x, f, rho) {

inform <- 0

writeLines(sprintf("\nNew rho = %13.5e, number of function evaluations = %d\n",
rho, nf))

writeLines(sprintf("Current function value = %13.5en",
f))

writeLines(sprintf("The corresponding X is:",
"\n"))

writeLines(sprintf(" %13.5e", x, "\n"))

writeLines(sprintf("\n", "\n"))

40 e04jy

list(INFORM = as.integer(inform))

}
ans <- e04jc(e04jc_objfun, npt, x, bl, bu, rhobeg,

rhoend, e04jc_monfun, maxcal)

print(ans$X)
print(ans$F)
print(ans$NF)
print(ans$IFAIL)

e04jy e04jy: Minimum, function of several variables, quasi-Newton algo-
rithm, simple bounds, using function values only (easy-to-use)

Description

e04jy is an easy-to-use quasi-Newton algorithm for finding a minimum of a functionF (x1x2 . . . xn),
subject to fixed upper and lower bounds of the independent variables x1, x2, . . . , xn, using function
values only.

It is intended for functions which are continuous and which have continuous first and second deriva-
tives (although it will usually work even if the derivatives have occasional discontinuities).

Usage

e04jy(ibound, funct1, bl, bu, x,
n=nrow(bl),
liw=n+2,
lw=max(n*(n-1)/2+12*n,13)
)

Arguments

ibound integer
Indicates whether the facility for dealing with bounds of special forms is to be
used.

funct1 void function
You must supply funct1 to calculate the value of the function F (x) at any point
x. It should be tested separately before being used with e04jy (see the E04
chapter introduction in the Fortran Library documentation).

bl double array
The lower bounds lj .

bu double array
The upper bounds uj .

x double array
x(j) must be set to an estimate of the jth component of the position of the
minimum for j = 1 . . . n.

e04jy 41

n integer: default = nrow(bl)
The number n of independent variables.

liw integer: default = n+2

lw integer: default = max(n*(n-1)/2+12*n,13)

Details

R interface to the NAG Fortran routine E04JYF.

Value

bl double array
The lower bounds actually used by e04jy.

bu double array
The upper bounds actually used by e04jy.

x double array
The lowest point found during the calculations. Thus, if ifail = 0 on exit, x(j)
is the jth component of the position of the minimum.

f double
The value of F (x) corresponding to the final point stored in x.

iw integer array
If ifail = 0, ifail = 3, ifail = 5, the first n elements of iw contain information
about which variables are currently on their bounds and which are free. Specifi-
cally, if xi is:
-: fixed on its upper bound, iw(i) is −1;
-: fixed on its lower bound, iw(i) is −2;
-: effectively a constant (i.e., lj = uj), iw(i) is −3;
-: free, iw(i) gives its position in the sequence of free variables.

w double array
If ifail = 0, ifail = 3, ifail = 5, w(i) contains a finite difference approximation
to the ith element of the projected gradient vector gz for i = 1 . . . n. In addition,
w(n+ 1) contains an estimate of the condition number of the projected Hessian
matrix (i.e., k). The rest of the array is used as workspace.

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04jyf.pdf

Examples

e04jy_funct1 = function(n, xc, fc) {

fc <- (xc[1] + 10 * xc[2])^2 + 5 * (xc[3] - xc[4])^2 + (xc[2] -
2 * xc[3])^4 + 10 * (xc[1] - xc[4])^4

list(FC = fc)
}

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04jyf.pdf

42 e04kd

ibound <- 0
bl <- matrix(c(1, -2, -1e+06, 1), nrow = 4, ncol = 1,

byrow = TRUE)

bu <- matrix(c(3, 0, 1e+06, 3), nrow = 4, ncol = 1,
byrow = TRUE)

x <- matrix(c(3, -1, 0, 1), nrow = 4, ncol = 1, byrow = TRUE)

e04jy(ibound, e04jy_funct1, bl, bu, x)

e04kd e04kd: Minimum, function of several variables, modified Newton al-
gorithm, simple bounds, using first derivatives (comprehensive)

Description

e04kd is a comprehensive modified Newton algorithm for finding:

- an unconstrained minimum of a function of several variables;

- a minimum of a function of several variables subject to fixed upper and/or lower bounds on the
variables.

First derivatives are required. The function is intended for functions which have continuous first
and second derivatives (although it will usually work even if the derivatives have occasional discon-
tinuities).

Usage

e04kd(funct, monit, eta, ibound, bl, bu, x, lh, iw, w,
n=nrow(bl),
iprint=1,
maxcal=50,
xtol=0.0,
delta=0.0,
stepmx=100000.0)

Arguments

funct void function
funct must evaluate the function F (x) and its first derivatives ∂F

∂xj
at a specified

point. (However, if you do not wish to calculate F or its first derivatives at a
particular x, there is the option of setting a argument to cause e04kd to terminate
immediately.)

monit void function
If iprint ≥ 0, you must supply monit which is suitable for monitoring the
minimization process. monit must not change the values of any of its arguments.

e04kd 43

eta double
Every iteration of e04kd involves a linear minimization (i.e., minimization of
F (x + αp) with respect to α). eta specifies how accurately these linear mini-
mizations are to be performed. The minimum with respect to α will be located
more accurately for small values of eta (say, 0.01) than large values (say, 0.9).

ibound integer
Indicates whether the problem is unconstrained or bounded. If there are bounds
on the variables, ibound can be used to indicate whether the facility for dealing
with bounds of special forms is to be used. It must be set to one of the following
values:
ibound = 0: If the variables are bounded and you are supplying all the lj and
uj individually.
ibound = 1: If the problem is unconstrained.
ibound = 2: If the variables are bounded, but all the bounds are of the form
0 ≤ xj .
ibound = 3: If all the variables are bounded, and l1 = l2 = · · · = ln and
u1 = u2 = · · · = un.
ibound = 4: If the problem is unconstrained. (The ibound = 4 option is
provided for consistency with other functions. In e04kd it produces the same
effect as ibound = 1.)

bl double array
The fixed lower bounds lj .

bu double array
The fixed upper bounds uj .

x double array
x(j) must be set to a guess at the jth component of the position of the minimum
for j = 1 . . . n.

lh integer

iw integer array

w double array

n integer: default = nrow(bl)
The number n of independent variables.

iprint integer: default = 1
The frequency with which monit is to be called.
iprint > 0: monit is called once every iprint iterations and just before exit from
e04kd.
iprint = 0: monit is just called at the final point.
iprint < 0: monit is not called at all.

maxcal integer: default = 50
The maximum permitted number of evaluations of F (x), i.e., the maximum
permitted number of calls of funct with iflag set to 2. It should be borne in mind
that, in addition to the calls of funct which are limited directly by maxcal, there
will be calls of funct (with iflag set to 1) to evaluate only first derivatives.

xtol double: default = 0.0
The accuracy in x to which the solution is required.

44 e04kd

delta double: default = 0.0
The differencing interval to be used for approximating the second derivatives
of F (x). Thus, for the finite difference approximations, the first derivatives of
F (x) are evaluated at points which are delta apart. If ε is the machine preci-
sion, then

√
ε will usually be a suitable setting for delta. If you set delta to 0.0

(or to any positive value less than ε), e04kd will automatically use
√
ε as the

differencing interval.

stepmx double: default = 100000.0
An estimate of the Euclidean distance between the solution and the starting point
supplied by you. (For maximum efficiency a slight overestimate is preferable.)

Details

R interface to the NAG Fortran routine E04KDF.

Value

bl double array
The lower bounds actually used by e04kd, e.g., If ibound = 2, bl(1) = bl(2) =
· · · = bl(n) = 0.0.

bu double array
The upper bounds actually used by e04kd, e.g., if ibound = 2, bu(1) = bu(2) =
· · · = bu(n) = 106.

x double array
The final point x(k). Thus, if ifail = 0 on exit, x(j) is the jth component of the
estimated position of the minimum.

hesl double array
During the determination of a direction pz (see the Description in Fortran library
documentation), H + E is decomposed into the product LDLT , where L is a
unit lower triangular matrix and D is a diagonal matrix. (The matrices H , E, L
and D are all of dimension nz , where nz is the number of variables free from
their bounds. H consists of those rows and columns of the full estimated second
derivative matrix which relate to free variables. E is chosen so that H + E is
positive definite.)

hesd double array
During the determination of a direction pz (see the Description in Fortran library
documentation), H + E is decomposed into the product LDLT , where L is a
unit lower triangular matrix and D is a diagonal matrix. (The matrices H , E, L
and D are all of dimension nz , where nz is the number of variables free from
their bounds. H consists of those rows and columns of the full estimated second
derivative matrix which relate to free variables. E is chosen so that H + E is
positive definite.)

istate integer array
Information about which variables are currently on their bounds and which are
free. If istate(j) is:
- equal to −1, xj is fixed on its upper bound;
- equal to −2, xj is fixed on its lower bound;
- equal to −3, xj is effectively a constant (i.e., lj = uj);
- positive, istate(j) gives the position of xj in the sequence of free variables.

e04kd 45

f double
The function value at the final point given in x.

g double array
The first derivative vector corresponding to the final point given in x. The com-
ponents of g corresponding to free variables should normally be close to zero.

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04kdf.pdf

Examples

e04kd_funct = function(iflag, n, xc, fc, gc) {

gc <- as.matrix(mat.or.vec(n, 1))
fc <- 0

if (iflag != 1) {

fc <- (xc[1] + 10 * xc[2])^2 + 5 * (xc[3] - xc[4])^2 +
(xc[2] - 2 * xc[3])^4 + 10 * (xc[1] - xc[4])^4

}
gc[1] <- 2 * (xc[1] + 10 * xc[2]) + 40 * (xc[1] - xc[4])^3
gc[2] <- 20 * (xc[1] + 10 * xc[2]) + 4 * (xc[2] - 2 * xc[3])^3
gc[3] <- 10 * (xc[3] - xc[4]) - 8 * (xc[2] - 2 * xc[3])^3
gc[4] <- 10 * (xc[4] - xc[3]) - 40 * (xc[1] - xc[4])^3
list(IFLAG = iflag, FC = fc, GC = as.matrix(gc))

}
e04kd_monit = function(n, xc, fc, gc, istate, gpjnrm,

cond, posdef, niter, nf) {

sprintf("\n Itn Fn evals Fn value Norm of proj gradient\n",
"\n")

sprintf(" %3d %5d %20.4f %20.4f\n", niter, nf, fc, gpjnrm,
"\n")

sprintf("\n J XJ GJ Status\n", "\n")

for (j in c(1:n)) {
isj <- istate[j]
if (isj > 0) {

sprintf("%2d %16.4f%20.4f %s\n", j, xc, j, gc, j,
" Free", "\n")

}
else if (isj == -1) {

}
else if (isj == -2) {

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04kdf.pdf

46 e04ky

}
else if (isj == -3) {

}
}

if (cond != 0) {

if (cond > 1e+06) {

sprintf("\nEstimated condition number of projected Hessian is more than 1.0e+6\n",
"\n")

}
else {

sprintf("\nEstimated condition number of projected Hessian = %10.2f\n",
cond, "\n")

}
if (!posdef) {

sprintf("\nProjected Hessian matrix is not positive definite\n",
"\n")

}
}
list()

}

eta <- 0.5
ibound <- 0
bl <- matrix(c(1, -2, -1e+06, 1), nrow = 4, ncol = 1,

byrow = TRUE)

bu <- matrix(c(3, 0, 1e+06, 3), nrow = 4, ncol = 1,
byrow = TRUE)

x <- matrix(c(3, -1, 0, 1), nrow = 4, ncol = 1, byrow = TRUE)

lh <- 6
iw <- matrix(c(0, 0), nrow = 2, ncol = 1, byrow = TRUE)

w <- as.matrix(mat.or.vec(34, 1))
e04kd(e04kd_funct, e04kd_monit, eta, ibound, bl, bu,

x, lh, iw, w)

e04ky e04ky: Minimum, function of several variables, quasi-Newton algo-
rithm, simple bounds, using first derivatives (easy-to-use)

e04ky 47

Description

e04ky is an easy-to-use quasi-Newton algorithm for finding a minimum of a functionF (x1x2 . . . xn),
subject to fixed upper and lower bounds on the independent variables x1, x2, . . . , xn, when first
derivatives of F are available.

It is intended for functions which are continuous and which have continuous first and second deriva-
tives (although it will usually work even if the derivatives have occasional discontinuities).

Usage

e04ky(ibound, funct2, bl, bu, x,
n = nrow(bl),
liw = (n+2),
lw = (max((10*n+n*(n-1)/2),11)))

Arguments

ibound integer
Indicates whether the facility for dealing with bounds of special forms is to be
used. It must be set to one of the following values:
ibound = 0: If you are supplying all the lj and uj individually.
ibound = 1: If there are no bounds on any xj .
ibound = 2: If all the bounds are of the form 0 ≤ xj .
ibound = 3: If l1 = l2 = · · · = ln and u1 = u2 = · · · = un.

funct2 function
You must supply funct2 to calculate the values of the function F (x) and its first
derivative ∂F

∂xj
at any point x. It should be tested separately before being used in

conjunction with e04ky (see the E04 chapter introduction in the Fortran Library
documentation).
(FC,GC) = funct2(n,xc)

bl double array
The lower bounds lj .

bu double array
The upper bounds uj .

x double array
x[j] must be set to a guess at the jth component of the position of the minimum
for j = 1 . . . n. The function checks the gradient at the starting point, and
is more likely to detect any error in your programming if the initial x[j] are
nonzero and mutually distinct.

n integer: default = nrow(bl)
The number n of independent variables.

liw integer: default = (n+2)

lw integer: default = (max((10*n+n*(n-1)/2),11))

Details

R interface to the NAG Fortran routine E04KYF.

48 e04ky

Value

BL double array
The lower bounds actually used by e04ky.

BU double array
The upper bounds actually used by e04ky.

X double array
The lowest point found during the calculations. Thus, if ifail = 0 on exit, x[j]
is the jth component of the position of the minimum.

F double
The value of F (x) corresponding to the final point stored in x.

G double array
The value of ∂F

∂xj
corresponding to the final point stored in x for j = 1 . . . n; the

value of g[j] for variables not on a bound should normally be close to zero.

IW integer array
If ifail = 0, ifail = 3, ifail = 5, the first n elements of iw contain information
about which variables are currently on their bounds and which are free. Specifi-
cally, if xi is:
-: fixed on its upper bound, iw[i] is −1;
-: fixed on its lower bound, iw[i] is −2;
-: effectively a constant (i.e., lj = uj), iw[i] is −3;
-: free, iw[i] gives its position in the sequence of free variables.

W double array
If ifail = 0, ifail = 3, ifail = 5, w[i] contains the ith element of the projected
gradient vector gz for i = 1 . . . n. In addition, w[n+ 1] contains an estimate of
the condition number of the projected Hessian matrix (i.e., k). The rest of the
array is used as workspace.

IFAIL integer
ifail = 0 unless the function detects an error or a warning has been flagged (see
the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04kyf.pdf

Examples

ifail<-0
funct2=function(n,xc){

gc<-as.matrix(mat.or.vec(n,1))
fc<-(xc[1]+10%*%xc[2])^2+5%*%(xc[3]-xc[4])^2+(xc[2]-2%*%xc[3])^4+10%*%(xc[1]-xc[4])^4
gc[1]<-2%*%(xc[1]+10%*%xc[2])+40%*%(xc[1]-xc[4])^3
gc[2]<-20%*%(xc[1]+10%*%xc[2])+4%*%(xc[2]-2%*%xc[3])^3
gc[3]<-10%*%(xc[3]-xc[4])-8%*%(xc[2]-2%*%xc[3])^3

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04kyf.pdf

e04kz 49

gc[4]<--10%*%(xc[3]-xc[4])-40%*%(xc[1]-xc[4])^3
list(FC=fc,GC=as.matrix(gc))
}

ibound<-0

bl<-matrix(c(1,-2,-1000000,1),nrow=4,ncol=1,byrow=TRUE)

bu<-matrix(c(3,0,1000000,3),nrow=4,ncol=1,byrow=TRUE)

x<-matrix(c(3,-1,0,1),nrow=4,ncol=1,byrow=TRUE)

e04ky(ibound,funct2,bl,bu,x)

e04kz e04kz: Minimum, function of several variables, modified Newton al-
gorithm, simple bounds, using first derivatives (easy-to-use)

Description

e04kz is an easy-to-use modified Newton algorithm for finding a minimum of a functionF (x1x2 . . . xn),
subject to fixed upper and lower bounds on the independent variables x1, x2, . . . , xn, when first
derivatives of F are available. It is intended for functions which are continuous and which have
continuous first and second derivatives (although it will usually work even if the derivatives have
occasional discontinuities).

Usage

e04kz(ibound, funct2, bl, bu, x,
n=nrow(bl)
)

Arguments

ibound integer
Indicates whether the facility for dealing with bounds of special forms is to be
used. It must be set to one of the following values:
ibound = 0: If you are supplying all the lj and uj individually.
ibound = 1: If there are no bounds on any xj .
ibound = 2: If all the bounds are of the form 0 ≤ xj .
ibound = 3: If l1 = l2 = · · · = ln and u1 = u2 = · · · = un.

funct2 void function
You must supply this function to calculate the values of the function F (x) and
its first derivatives ∂F

∂xj
at any point x. It should be tested separately before being

used in conjunction with e04kz (see the E04 chapter).

50 e04kz

bl double array
The lower bounds lj .

bu double array
The upper bounds uj .

x double array
x(j) must be set to a guess at the jth component of the position of the minimum
for j = 1 . . . n. The function checks the gradient at the starting point, and
is more likely to detect any error in your programming if the initial x(j) are
nonzero and mutually distinct.

n integer: default = nrow(bl)
The number n of independent variables.

Details

R interface to the NAG Fortran routine E04KZF.

Value

bl double array
The lower bounds actually used by e04kz.

bu double array
The upper bounds actually used by e04kz.

x double array
The lowest point found during the calculations of the position of the minimum.

f double
The value of F (x) corresponding to the final point stored in x.

g double array
The value of ∂F

∂xj
corresponding to the final point stored in x for j = 1 . . . n; the

value of g(j) for variables not on a bound should normally be close to zero.

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04kzf.pdf

Examples

e04kz_funct2 = function(n, xc, fc, gc) {

gc <- as.matrix(mat.or.vec(n, 1))
fc <- (xc[1] + 10 * xc[2])^2 + 5 * (xc[3] - xc[4])^2 + (xc[2] -

2 * xc[3])^4 + 10 * (xc[1] - xc[4])^4
gc[1] <- 2 * (xc[1] + 10 * xc[2]) + 40 * (xc[1] - xc[4])^3
gc[2] <- 20 * (xc[1] + 10 * xc[2]) + 4 * (xc[2] - 2 * xc[3])^3
gc[3] <- 10 * (xc[3] - xc[4]) - 8 * (xc[2] - 2 * xc[3])^3
gc[4] <- -10 * (xc[3] - xc[4]) - 40 * (xc[1] - xc[4])^3
list(FC = fc, GC = as.matrix(gc))

}

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04kzf.pdf

e04lb 51

ibound <- 0
bl <- matrix(c(1, -2, -1e+06, 1), nrow = 4, ncol = 1,

byrow = TRUE)

bu <- matrix(c(3, 0, 1e+06, 3), nrow = 4, ncol = 1,
byrow = TRUE)

x <- matrix(c(3, -1, 0, 1), nrow = 4, ncol = 1, byrow = TRUE)

e04kz(ibound, e04kz_funct2, bl, bu, x)

e04lb e04lb: Minimum, function of several variables, modified Newton algo-
rithm, simple bounds, using first and second derivatives (comprehen-
sive)

Description

e04lb is a comprehensive modified Newton algorithm for finding:

an unconstrained minimum of a function of several variables

a minimum of a function of several variables subject to fixed upper and/or lower bounds on the
variables.

First and second derivatives are required. The function is intended for functions which have continu-
ous first and second derivatives (although it will usually work even if the derivatives have occasional
discontinuities).

Usage

e04lb(funct, hess, monit, ibound, bl, bu, x, lh, iw, w,
n=nrow(bl),
iprint=1,
maxcal=50,
eta=if(n ==1) 0.0 else 0.9,
xtol=0.0,
stepmx=100000.0
)

Arguments

funct void function
funct must evaluate the function F (x) and its first derivatives ∂F

∂xj
at any point

x. (However, if you do not wish to calculate F (x) or its first derivatives at a
particular x, there is the option of setting a argument to cause e04lb to terminate
immediately.)

52 e04lb

hess void function
h must calculate the second derivatives of F at any point x. (As with funct, there
is the option of causing e04lb to terminate immediately.)

monit void function
If iprint ≥ 0, you must supply monit which is suitable for monitoring the
minimization process. monit must not change the values of any of its arguments.

ibound integer
Specifies whether the problem is unconstrained or bounded. If there are bounds
on the variables, ibound can be used to indicate whether the facility for dealing
with bounds of special forms is to be used. It must be set to one of the following
values:
ibound = 0: If the variables are bounded and you are supplying all the lj and
uj individually.
ibound = 1: If the problem is unconstrained.
ibound = 2: If the variables are bounded, but all the bounds are of the form
0 ≤ xj .
ibound = 3: If all the variables are bounded, and l1 = l2 = · · · = ln and
u1 = u2 = · · · = un.
ibound = 4: If the problem is unconstrained. (The ibound = 4 option is
provided purely for consistency with other functions. In e04lb it produces the
same effect as ibound = 1.)

bl double array
The fixed lower bounds lj .

bu double array
The fixed upper bounds uj .

x double array
x(j) must be set to a guess at the jth component of the position of minimum for
j = 1 . . . n.

lh integer
iw integer array
w double array
n integer: default = nrow(bl)

The number n of independent variables.
iprint integer: default = 1

The frequency with which monit is to be called.
iprint > 0: monit is called once every iprint iterations and just before exit from
e04lb.
iprint = 0: monit is just called at the final point.
iprint < 0: monit is not called at all.

maxcal integer: default = 50
The maximum permitted number of evaluations of F (x), i.e., the maximum
permitted number of calls of funct.

eta double: default = if(n ==1) 0.0 else 0.9,
Every iteration of e04lb involves a linear minimization (i.e., minimization of
F (x + αp) with respect to α). eta specifies how accurately these linear mini-
mizations are to be performed. The minimum with respect to α will be located
more accurately for small values of eta (say, 0.01) than for large values (say,
0.9).

e04lb 53

xtol double: default = 0.0
The accuracy in x to which the solution is required.

stepmx double: default = 100000.0
An estimate of the Euclidean distance between the solution and the starting point
supplied by you. (For maximum efficiency a slight overestimate is preferable.)

Details

R interface to the NAG Fortran routine E04LBF.

Value

bl double array
The lower bounds actually used by e04lb, e.g., if ibound = 2, bl(1) = bl(2) =
· · · = bl(n) = 0.0.

bu double array
The upper bounds actually used by e04lb, e.g., if ibound = 2, bu(1) = bu(2) =
· · · = bu(n) = 106.

x double array
The final point x(k). Thus, if ifail = 0 on exit, x(j) is the jth component of the
estimated position of the minimum.

hesl double array
During the determination of a direction pz (see the Description in Fortran library
documentation), H + E is decomposed into the product LDLT , where L is a
unit lower triangular matrix and D is a diagonal matrix. (The matrices H , E, L
and D are all of dimension nz , where nz is the number of variables free from
their bounds. H consists of those rows and columns of the full estimated second
derivative matrix which relate to free variables. E is chosen so that H + E is
positive definite.)

hesd double array
During the determination of a direction pz (see the Description in Fortran library
documentation), H + E is decomposed into the product LDLT , where L is a
unit lower triangular matrix and D is a diagonal matrix. (The matrices H , E,
L and D are all of dimension nz , where nz is the number of variables free
from their bounds. H consists of those rows and columns of the full second
derivative matrix which relate to free variables. E is chosen so that H + E is
positive definite.)

istate integer array
Information about which variables are currently on their bounds and which are
free. If istate(j) is:
- equal to −1, xj is fixed on its upper bound;
- equal to −2, xj is fixed on its lower bound;
- equal to −3, xj is effectively a constant (i.e., lj = uj);
- positive, istate(j) gives the position of xj in the sequence of free variables.

f double
The function value at the final point given in x.

g double array
The first derivative vector corresponding to the final point given in x. The com-
ponents of g corresponding to free variables should normally be close to zero.

54 e04lb

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04lbf.pdf

Examples

e04lb_funct = function(iflag, n, xc, fc, gc) {

gc <- as.matrix(mat.or.vec(n, 1))
fc <- (xc[1] + 10 * xc[2])^2 + 5 * (xc[3] - xc[4])^2 + (xc[2] -

2 * xc[3])^4 + 10 * (xc[1] - xc[4])^4
gc[1] <- 2 * (xc[1] + 10 * xc[2]) + 40 * (xc[1] - xc[4])^3
gc[2] <- 20 * (xc[1] + 10 * xc[2]) + 4 * (xc[2] - 2 * xc[3])^3
gc[3] <- 10 * (xc[3] - xc[4]) - 8 * (xc[2] - 2 * xc[3])^3
gc[4] <- 10 * (xc[4] - xc[3]) - 40 * (xc[1] - xc[4])^3
list(IFLAG = iflag, FC = fc, GC = as.matrix(gc))

}
e04lb_hess = function(iflag, n, xc, fhesl, lh, fhesd) {

fhesl <- as.matrix(mat.or.vec(lh, 1))
fhesd[1] <- 2 + 120 * (xc[1] - xc[4])^2
fhesd[2] <- 200 + 12 * (xc[2] - 2 * xc[3])^2
fhesd[3] <- 10 + 48 * (xc[2] - 2 * xc[3])^2
fhesd[4] <- 10 + 120 * (xc[1] - xc[4])^2
fhesl[1] <- 20
fhesl[2] <- 0
fhesl[3] <- -24 * (xc[2] - 2 * xc[3])^2
fhesl[4] <- -120 * (xc[1] - xc[4])^2
fhesl[5] <- 0
fhesl[6] <- -10
list(IFLAG = iflag, FHESL = as.matrix(fhesl), FHESD = as.matrix(fhesd))

}
e04lb_monit = function(n, xc, fc, gc, istate, gpjnrm,

cond, posdef, niter, nf) {

sprintf("\n Itn Fn evals Fn value Norm of proj gradient\n",
"\n")

sprintf(" %3d %5d %20.4f %20.4f\n", niter, nf, fc, gpjnrm,
"\n")

sprintf("\n J XJ GJ Status\n", "\n")

for (j in c(1:n)) {
isj <- istate[j]
if (isj > 0) {

sprintf("%2d %16.4f%20.4f %s\n", j, xc, j, gc, j,
" Free", "\n")

}
else if (isj == -1) {

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04lbf.pdf

e04ly 55

}
else if (isj == -2) {

}
else if (isj == -3) {

}
}

if (cond != 0) {

if (cond > 1e+06) {

sprintf("\nEstimated condition number of projected Hessian is more than 1.0e+6\n",
"\n")

}
else {

sprintf("\nEstimated condition number of projected Hessian = %10.2f\n",
cond, "\n")

}
if (!posdef) {

sprintf("\nProjected Hessian matrix is not positive definite\n",
"\n")

}
}
list()

}

ibound <- 0
bl <- matrix(c(1, -2, -1e+06, 1), nrow = 4, ncol = 1,

byrow = TRUE)

bu <- matrix(c(3, 0, 1e+06, 3), nrow = 4, ncol = 1,
byrow = TRUE)

x <- matrix(c(3, -1, 0, 1), nrow = 4, ncol = 1, byrow = TRUE)

lh <- 6
iw <- matrix(c(0, 0), nrow = 2, ncol = 1, byrow = TRUE)

w <- as.matrix(mat.or.vec(34, 1))
e04lb(e04lb_funct, e04lb_hess, e04lb_monit, ibound,

bl, bu, x, lh, iw, w)

56 e04ly

e04ly e04ly: Minimum, function of several variables, modified Newton algo-
rithm, simple bounds, using first and second derivatives (easy-to-use)

Description

e04ly is an easy-to-use modified-Newton algorithm for finding a minimum of a function, F (x1x2 . . . xn)
subject to fixed upper and lower bounds on the independent variables, x1, x2, . . . , xn when first and
second derivatives of F are available. It is intended for functions which are continuous and which
have continuous first and second derivatives (although it will usually work even if the derivatives
have occasional discontinuities).

Usage

e04ly(ibound, funct2, hess2, bl, bu, x,
n=nrow(bl)
)

Arguments

ibound integer
Indicates whether the facility for dealing with bounds of special forms is to be
used. It must be set to one of the following values:
ibound = 0: If you are supplying all the lj and uj individually.
ibound = 1: If there are no bounds on any xj .
ibound = 2: If all the bounds are of the form 0 ≤ xj .
ibound = 3: If l1 = l2 = · · · = ln and u1 = u2 = · · · = un.

funct2 void function
You must supply this function to calculate the values of the function F (x) and
its first derivatives ∂F

∂xj
at any point x. It should be tested separately before being

used in conjunction with e04ly (see the E04 chapter introduction in the Fortran
Library documentation).

hess2 void function
You must supply this function to evaluate the elementsHij = ∂2F

∂xi∂xj
of the ma-

trix of second derivatives of F (x) at any point x. It should be tested separately
before being used in conjunction with e04ly (see the E04 chapter introduction
in the Fortran Library documentation).

bl double array
The lower bounds lj .

bu double array
The upper bounds uj .

x double array
x(j) must be set to a guess at the jth component of the position of the minimum
for j = 1 . . . n. The function checks the gradient and the Hessian matrix at the
starting point, and is more likely to detect any error in your programming if the
initial x(j) are nonzero and mutually distinct.

n integer: default = nrow(bl)
The number n of independent variables.

e04ly 57

Details

R interface to the NAG Fortran routine E04LYF.

Value

bl double array
The lower bounds actually used by e04ly.

bu double array
The upper bounds actually used by e04ly.

x double array
The lowest point found during the calculations. Thus, if ifail = 0 on exit, x(j)
is the jth component of the position of the minimum.

f double
The value of F (x) corresponding to the final point stored in x.

g double array
The value of ∂F

∂xj
corresponding to the final point stored in x for j = 1 . . . n; the

value of g(j) for variables not on a bound should normally be close to zero.

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04lyf.pdf

Examples

e04ly_funct2 = function(n, xc, fc, gc) {

gc <- as.matrix(mat.or.vec(n, 1))
fc <- (xc[1] + 10 * xc[2])^2 + 5 * (xc[3] - xc[4])^2 + (xc[2] -

2 * xc[3])^4 + 10 * (xc[1] - xc[4])^4
gc[1] <- 2 * (xc[1] + 10 * xc[2]) + 40 * (xc[1] - xc[4])^3
gc[2] <- 20 * (xc[1] + 10 * xc[2]) + 4 * (xc[2] - 2 * xc[3])^3
gc[3] <- 10 * (xc[3] - xc[4]) - 8 * (xc[2] - 2 * xc[3])^3
gc[4] <- 10 * (xc[4] - xc[3]) - 40 * (xc[1] - xc[4])^3
list(FC = fc, GC = as.matrix(gc))

}
e04ly_hess2 = function(n, xc, heslc, lh, hesdc) {

heslc <- as.matrix(mat.or.vec(lh, 1))
hesdc <- as.matrix(mat.or.vec(n, 1))
hesdc[1] <- 2 + 120 * (xc[1] - xc[4])^2
hesdc[2] <- 200 + 12 * (xc[2] - 2 * xc[3])^2
hesdc[3] <- 10 + 48 * (xc[2] - 2 * xc[3])^2
hesdc[4] <- 10 + 120 * (xc[1] - xc[4])^2
heslc[1] <- 20
heslc[2] <- 0
heslc[3] <- -24 * (xc[2] - 2 * xc[3])^2
heslc[4] <- -120 * (xc[1] - xc[4])^2
heslc[5] <- 0
heslc[6] <- -10

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04lyf.pdf

58 e04mf

list(HESLC = as.matrix(heslc), HESDC = as.matrix(hesdc))
}

ibound <- 0
bl <- matrix(c(1, -2, -1e+06, 1), nrow = 4, ncol = 1,

byrow = TRUE)

bu <- matrix(c(3, 0, 1e+06, 3), nrow = 4, ncol = 1,
byrow = TRUE)

x <- matrix(c(3, -1, 0, 1), nrow = 4, ncol = 1, byrow = TRUE)

e04ly(ibound, e04ly_funct2, e04ly_hess2, bl, bu, x)

e04mf e04mf: LP problem (dense)

Description

e04mf solves general linear programming problems. It is not intended for large sparse problems.

Usage

e04mf(a, bl, bu, cvec, istate, x, optlist,
n = nrow(x),
nclin = nrow(a))

Arguments

a double array
The ith row of a must contain the coefficients of the ith general linear constraint
for i = 1 . . .mL.

bl double array

bu double array
Must contain the lower bounds and bu the upper bounds, for all the constraints in
the following order. The first n elements of each array must contain the bounds
on the variables, and the next mL elements the bounds for the general linear
constraints (if any). To specify a nonexistent lower bound (i.e., lj = −∞), set
bl[j] ≤ −bigbnd, and to specify a nonexistent upper bound (i.e., uj = +∞), set
bu[j] ≥ bigbnd; the default value of bigbnd is 1020, but this may be changed
by the optional argument infiniteboundsize. To specify the jth constraint as an
equality, set bl[j] = bu[j] = β, say, where abs(β) < bigbnd.

cvec double array
The coefficients of the objective function when the problem is of type LP.

istate integer array
Need not be set if the (default) optional argument coldstart is used.

e04mf 59

x double array
An initial estimate of the solution.

optlist options list
Optional parameters may be listed, as shown in the following table:

Name Type Default
Check Frequency integer Default = 50
Cold Start Default
Warm Start
Crash Tolerance double Default = 0.01
Defaults
Expand Frequency integer Default = 5
Feasibility Tolerance double Default =

√
ε

Infinite Bound Size double Default = 1020

Infinite Step Size double Default = max(bigbnd, 1020)
Iteration Limit integer Default = max(50, 5 (n+mL))
Iters
Itns
List Default for e04mf = list
Nolist Default for e04mf = nolist
Minimum Sum of Infeasibilities no Default = NO
Monitoring File integer Default = −1
Optimality Tolerance double Default = ε0.8

Print Level integer = 0
Problem Type string Default = LP

n integer: default = nrow(x)
n, the number of variables.

nclin integer: default = nrow(a)
mL, the number of general linear constraints.

Details

R interface to the NAG Fortran routine E04MFF.

Value

ISTATE integer array
The status of the constraints in the working set at the point returned in x. The
significance of each possible value of istate[j] is as follows:

X double array
The point at which e04mf terminated. If ifail = 0, ifail = 1, ifail = 4, x
contains an estimate of the solution.

ITER integer
The total number of iterations performed.

OBJ double
The value of the objective function at x if x is feasible, or the sum of infeasibili-
ites at x otherwise. If the problem is of type FP and x is feasible, obj is set to
zero.

60 e04mf

AX double array
The final values of the linear constraints Ax.

CLAMDA double array
The values of the Lagrange multipliers for each constraint with respect to the
current working set. The first n elements contain the multipliers for the bound
constraints on the variables, and the next mL elements contain the multipliers
for the general linear constraints (if any). If istate[j] = 0 (i.e., constraint j is
not in the working set), clamda[j] is zero. If x is optimal, clamda[j] should
be non-negative if istate[j] = 1, non-positive if istate[j] = 2 and zero if
istate[j] = 4.

IFAIL integer
ifail = 0 unless the function detects an error or a warning has been flagged (see
the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04mff.pdf

Examples

optlist<-list()

ifail<-0

a<-matrix(c(1,1,1,1,1,1,1,0.15,0.04,0.02,0.04,0.02,0.01,0.03,0.03,0.05,0.08,0.02,0.06,0.01,0,0.02,0.04,0.01,0.02,0.02,0,0,0.02,0.03,0,0,0.01,0,0,0.7,0.75,0.8,0.75,0.8,0.97,0,0.02,0.06,0.08,0.12,0.02,0.01,0.97),nrow=7,ncol=7,byrow=TRUE)

bl<-matrix(c(-0.01,-0.1,-0.01,-0.04,-0.1,-0.01,-0.01,-0.13,-9.999999999999999e+24,-9.999999999999999e+24,-9.999999999999999e+24,-9.999999999999999e+24,-0.0992,-0.003),nrow=14,ncol=1,byrow=TRUE)

bu<-matrix(c(0.01,0.15,0.03,0.02,0.05,9.999999999999999e+24,9.999999999999999e+24,-0.13,-0.004900000000000001,-0.0064,-0.0037,-0.0012,9.999999999999999e+24,0.002),nrow=14,ncol=1,byrow=TRUE)

cvec<-matrix(c(-0.02,-0.2,-0.2,-0.2,-0.2,0.04,0.04),nrow=7,ncol=1,byrow=TRUE)

istate<-as.matrix(mat.or.vec(14,1))

x<-matrix(c(-0.01,-0.03,0,-0.01,-0.1,0.02,0.01),nrow=7,ncol=1,byrow=TRUE)

e04mf(a,bl,bu,cvec,istate,x,optlist)

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04mff.pdf

e04nc 61

e04nc e04nc: Convex QP problem or linearly-constrained linear least
squares problem (dense)

Description

e04nc solves linearly constrained linear least squares problems and convex quadratic programming
problems. It is not intended for large sparse problems.

Usage

e04nc(c, bl, bu, cvec, istate, kx, x, a, b, optlist,
m = nrow(a),
n = nrow(kx),
nclin = nrow(c))

Arguments

c double array
The ith row of c must contain the coefficients of the ith general constraint for
i = 1 . . . nclin.

bl double array

bu double array
Bl must contain the lower bounds and bu the upper bounds, for all the con-
straints, in the following order. The first n elements of each array must contain
the bounds on the variables, and the next nL elements must contain the bounds
for the general linear constraints (if any). To specify a nonexistent lower bound
(i.e., lj = −∞), set bl[j] ≤ −bigbnd, and to specify a nonexistent upper bound
(i.e., uj = +∞), set bu[j] ≥ bigbnd; the default value of bigbnd is 1020, but this
may be changed by the optional argument infiniteboundsize. To specify the jth
constraint as an equality, set bu[j] = bl[j] = β, say, where abs(β) < bigbnd.

cvec double array
The coefficients of the explicit linear term of the objective function.

istate integer array
Need not be set if the (default) optional argument coldstart is used.

kx integer array
Need not be initialized for problems of type FP, LP, QP1, QP2, LS1 (the default)
or LS2.

x double array
An initial estimate of the solution.

a double array
The array a must contain the matrixA as specified in table1 (see the Description
in Fortran library documentation).

b double array
The m elements of the vector of observations.

optlist options list
Optional parameters may be listed, as shown in the following table:

62 e04nc

Name Type Default
Cold Start Default
Warm Start
Crash Tolerance double Default = 0.01
Defaults
Feasibility Phase Iteration Limit integer Default = max(50, 5 (n+ nL))
Optimality Phase Iteration Limit integer Default = max(50, 5 (n+ nL))
Feasibility Tolerance double Default =

√
ε

Hessian no Default = NO
Infinite Bound Size double Default = 1020

Infinite Step Size double Default = max(bigbnd, 1020)
Iteration Limit integer Default = max(50, 5 (n+ nL))
Iters
Itns
List Default for e04nc = list
Nolist Default for e04nc = nolist
Monitoring File integer Default = −1
Print Level integer = 0
Problem Type string Default = LS1
Rank Tolerance double Default = 100ε or 10

√
ε (see below)

m integer: default = nrow(a)
m, the number of rows in the matrix A. If the problem is specified as type FP or
LP, m is not referenced and is assumed to be zero.

n integer: default = nrow(kx)
n, the number of variables.

nclin integer: default = nrow(c)
nL, the number of general linear constraints.

Details

R interface to the NAG Fortran routine E04NCF.

Value

ISTATE integer array
The status of the constraints in the working set at the point returned in x. The
significance of each possible value of istate[j] is as follows:

KX integer array
Defines the order of the columns of a with respect to the ordering of x, as de-
scribed above.

X double array
The point at which e04nc terminated. If ifail = 0, ifail = 1, ifail = 4, x contains
an estimate of the solution.

A double array
If hessian = NO and the problem is of type LS or QP, a contains the upper
triangular Cholesky factor R of eqn8 (see the Fortran library documentation),
with columns ordered as indicated by kx. If hessian = YES and the problem
is of type LS or QP, a contains the upper triangular Cholesky factor R of the

e04nc 63

Hessian matrix H , with columns ordered as indicated by kx. In either case R
may be used to obtain the variance-covariance matrix or to recover the upper
triangular factor of the original least squares matrix.

B double array
The transformed residual vector of equation eqn10 (see the Fortran library doc-
umentation).

ITER integer
The total number of iterations performed.

OBJ double
The value of the objective function at x if x is feasible, or the sum of infeasibili-
ites at x otherwise. If the problem is of type FP and x is feasible, obj is set to
zero.

CLAMDA double array
The values of the Lagrange multipliers for each constraint with respect to the
current working set. The first n elements contain the multipliers for the bound
constraints on the variables, and the next nL elements contain the multipliers for
the general linear constraints (if any). If istate[j] = 0 (i.e., constraint j is not in
the working set), clamda[j] is zero. If x is optimal, clamda[j] should be non-
negative if istate[j] = 1, non-positive if istate[j] = 2 and zero if istate[j] = 4.

IFAIL integer
ifail = 0 unless the function detects an error or a warning has been flagged (see
the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04ncf.pdf

Examples

optlist<-list()

ifail<-0

c<-matrix(c(1,1,1,1,1,1,1,1,4,1,2,3,4,-2,1,1,1,1,1,-1,1,-1,1,1,1,1,1),nrow=3,ncol=9,byrow=TRUE)

bl<-matrix(c(0,0,-9.999999999999999e+24,0,0,0,0,0,0,2,-9.999999999999999e+24,1),nrow=12,ncol=1,byrow=TRUE)

bu<-matrix(c(2,2,2,2,2,2,2,2,2,9.999999999999999e+24,2,4),nrow=12,ncol=1,byrow=TRUE)

cvec<-matrix(c(0),nrow=1,ncol=1,byrow=TRUE)

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04ncf.pdf

64 e04nf

istate<-as.matrix(mat.or.vec(12,1))

kx<-as.matrix(mat.or.vec(9,1))

x<-matrix(c(1,0.5,0.3333,0.25,0.2,0.1667,0.1428,0.125,0.1111),nrow=9,ncol=1,byrow=TRUE)

a<-matrix(c(1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,2,0,0,1,1,3,1,1,1,-1,-1,-3,1,1,1,4,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,2,1,1,0,0,0,-1,1,1,1,1,0,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,0,1,1,1,2,2,3,1,0,1,1,1,1,0,2,2),nrow=10,ncol=9,byrow=TRUE)

b<-matrix(c(1,1,1,1,1,1,1,1,1,1),nrow=10,ncol=1,byrow=TRUE)

e04nc(c,bl,bu,cvec,istate,kx,x,a,b,optlist)

e04nf e04nf: QP problem (dense)

Description

e04nf solves general quadratic programming problems. It is not intended for large sparse problems.

Usage

e04nf(a, bl, bu, cvec, h, qphess, istate, x, optlist,
n = nrow(x),
nclin = nrow(a))

Arguments

a double array
The ith row of a must contain the coefficients of the ith general linear constraint
for i = 1 . . .mL.
If nclin = 0, a is not referenced.

bl double array

bu double array
Bl must contain the lower bounds and bu the upper bounds, for all the constraints
in the following order. The first n elements of each array must contain the
bounds on the variables, and the next mL elements the bounds for the general
linear constraints (if any). To specify a nonexistent lower bound (i.e., lj = −∞),
set bl[j] ≤ −bigbnd, and to specify a nonexistent upper bound (i.e., uj = +∞),
set bu[j] ≥ bigbnd; the default value of bigbnd is 1020, but this may be changed
by the optional argument infiniteboundsize. To specify the jth constraint as an
equality, set bl[j] = bu[j] = β, say, where abs(β) < bigbnd.

e04nf 65

cvec double array
The coefficients of the explicit linear term of the objective function when the
problem is of type LP, QP2 (the default) and QP4.
If the problem is of type FP, QP1, or QP3, cvec is not referenced.

h double array
May be used to store the quadratic term H of the QP objective function if de-
sired. In some cases, you need not use h to store H explicitly (see the specifi-
cation of function qphess). The elements of h are referenced only by function
qphess. The number of rows of H is denoted by m, whose default value is n.
(The optional argument hessianrows may be used to specify a value of m < n.)
double array
May be used to store the quadratic term H of the QP objective function if de-
sired. In some cases, you need not use h to store H explicitly (see the specifi-
cation of function qphess). The elements of h are referenced only by function
qphess. The number of rows of H is denoted by m, whose default value is n.
(The optional argument hessianrows may be used to specify a value of m < n.)

qphess function
In general, you need not provide a version of qphess, because a ‘default’ function
with name e04nfu is included in the Library. However, the algorithm of e04nf
requires only the product of H or HTH and a vector x; and in some cases you
may obtain increased efficiency by providing a version of qphess that avoids the
need to define the elements of the matrices H or HTH explicitly.
(HX,IWSAV) = qphess(n,jthcol,h,x,iwsav)

istate integer array
Need not be set if the (default) optional argument coldstart is used.
If the optional argument warmstart has been chosen, istate specifies the desired
status of the constraints at the start of the feasibility phase. More precisely, the
first n elements of istate refer to the upper and lower bounds on the variables,
and the nextmL elements refer to the general linear constraints (if any). Possible
values for istate[j] are as follows:

x double array
An initial estimate of the solution.

optlist options list
Optional parameters may be listed, as shown in the following table:

Name Type Default
Check Frequency double Default = 50
Cold Start Default
Warm Start
Crash Tolerance double Default = 0.01
Defaults
Expand Frequency integer Default = 5
Feasibility Phase Iteration Limit integer Default = max(50, 5 (n+mL))
Optimality Phase Iteration Limit integer Default = max(50, 5 (n+mL))
Feasibility Tolerance double Default =

√
ε

Hessian Rows integer Default = n
Infinite Bound Size double Default = 1020

Infinite Step Size double Default = max(bigbnd, 1020)
Iteration Limit integer Default = max(50, 5 (n+mL))

66 e04nf

Iters
Itns
List Default for e04nf = list
Nolist Default for e04nf = nolist
Maximum Degrees of Freedom integer Default = n
Minimum Sum of Infeasibilities string Default = NO
Monitoring File integer Default = −1
Optimality Tolerance double Default = ε0.5

Print Level integer = 0
Problem Type string Default = QP2
Rank Tolerance double Default = 100ε

n integer: default = nrow(x)
n, the number of variables.

nclin integer: default = nrow(a)
mL, the number of general linear constraints.

Details

R interface to the NAG Fortran routine E04NFF.

Value

ISTATE integer array
The status of the constraints in the working set at the point returned in x. The
significance of each possible value of istate[j] is as follows:

X double array
The point at which e04nf terminated. If ifail = 0, ifail = 1, ifail = 4, x contains
an estimate of the solution.

ITER integer
The total number of iterations performed.

OBJ double
The value of the objective function at x if x is feasible, or the sum of infeasibil-
ities at x otherwise. If the problem is of type FP and x is feasible, obj is set to
zero.

AX double array
The final values of the linear constraints Ax.
If nclin = 0, ax is not referenced.

CLAMDA double array
The values of the Lagrange multipliers for each constraint with respect to the
current working set. The first n elements contain the multipliers for the bound
constraints on the variables, and the next mL elements contain the multipliers
for the general linear constraints (if any). If istate[j] = 0 (i.e., constraint j is
not in the working set), clamda[j] is zero. If x is optimal, clamda[j] should
be non-negative if istate[j] = 1, non-positive if istate[j] = 2 and zero if
istate[j] = 4.

IFAIL integer
ifail = 0 unless the function detects an error or a warning has been flagged (see
the Errors section in Fortran library documentation).

e04nf 67

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04nff.pdf

Examples

optlist <- list()

ifail <- 0
qphess = function(n, jthcol, h, x, iwsav) {

ldh <- nrow(h)

if (iwsav[365] == 3 || iwsav[365] == 4) {

hx <- h %*% x

} else if (iwsav[365] == 5 || iwsav[365] == 6) {

hx <- t(h) %*% h %*% x
} else {

hx <- as.matrix(mat.or.vec(n, 1))
}
list(HX = as.matrix(hx), IWSAV = as.matrix(iwsav))

}

a <- matrix(c(1, 1, 1, 1, 1, 1, 1, 0.15, 0.04, 0.02,
0.04, 0.02, 0.01, 0.03, 0.03, 0.05, 0.08, 0.02, 0.06, 0.01,
0, 0.02, 0.04, 0.01, 0.02, 0.02, 0, 0, 0.02, 0.03, 0, 0,
0.01, 0, 0, 0.7, 0.75, 0.8, 0.75, 0.8, 0.97, 0, 0.02, 0.06,
0.08, 0.12, 0.02, 0.01, 0.97), nrow = 7, ncol = 7, byrow = TRUE)

bl <- matrix(c(-0.01, -0.1, -0.01, -0.04, -0.1, -0.01,
-0.01, -0.13, -1e+25, -1e+25, -1e+25, -1e+25, -0.0992, -0.003),
nrow = 14, ncol = 1, byrow = TRUE)

bu <- matrix(c(0.01, 0.15, 0.03, 0.02, 0.05, 1e+25,
1e+25, -0.13, -0.0049, -0.0064, -0.0037, -0.0012, 1e+25,
0.002), nrow = 14, ncol = 1, byrow = TRUE)

cvec <- matrix(c(-0.02, -0.2, -0.2, -0.2, -0.2, 0.04,
0.04), nrow = 7, ncol = 1, byrow = TRUE)

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04nff.pdf

68 e04nk

h <- matrix(c(2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0,
0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0,
0, 2, 0, 0, 0, 0, 0, 0, 0, -2, -2, 0, 0, 0, 0, 0, -2, -2),
nrow = 7, ncol = 7, byrow = TRUE)

istate <- as.matrix(mat.or.vec(14, 1))

x <- matrix(c(-0.01, -0.03, 0, -0.01, -0.1, 0.02,
0.01), nrow = 7, ncol = 1, byrow = TRUE)

e04nf(a, bl, bu, cvec, h, qphess, istate, x, optlist)

e04nk e04nk: LP or QP problem (sparse)

Description

e04nk solves sparse linear programming or quadratic programming problems.

Usage

e04nk(n, m, iobj, ncolh, qphx, a, ha, ka, bl, bu, start, names, crname, ns, xs, istate, leniz, lenz, optlist,
nnz = nrow(a),
nname = nrow(crname))

Arguments

n integer
n, the number of variables (excluding slacks). This is the number of columns in
the linear constraint matrix A.

m integer
m, the number of general linear constraints (or slacks). This is the number of
rows in A, including the free row (if any; see iobj).

iobj integer
If iobj > 0, row iobj of A is a free row containing the nonzero elements of the
vector c appearing in the linear objective term cTx.

ncolh integer
nH , the number of leading nonzero columns of the Hessian matrix H . For FP
and LP problems, ncolh must be set to zero.

qphx function
For QP problems, you must supply a version of qphx to compute the matrix
product Hx. If H has zero rows and columns, it is most efficient to order the
variables x =

(
y z

)T
so that

Hx =

(
H1 0
0 0

)(
y
z

)
=

(
H1y

0

)
,

e04nk 69

where the nonlinear variables y appear first as shown. For FP and LP problems,
qphx will never be called by e04nk and hence qphx may be the dummy function
e04nku.
(HX) = qphx(nstate,ncolh,x)

a double array
The nonzero elements of A, ordered by increasing column index. Note that
elements with the same row and column indices are not allowed.

ha integer array
ha[i] must contain the row index of the nonzero element stored in a[i] for i =
1 . . . nnz. Note that the row indices for a column may be supplied in any order.

ka integer array
ka[j] must contain the index in a of the start of the jth column for j = 1 . . . n.
To specify the jth column as empty, set ka[j] = ka[j + 1]. Note that the first
and last elements of ka must be such that ka[1] = 1 and ka[n+ 1] = nnz + 1.

bl double array
l, the lower bounds for all the variables and general constraints, in the following
order. The first n elements of bl must contain the bounds on the variables x,
and the next m elements the bounds for the general linear constraints Ax (or
slacks s) and the free row (if any). To specify a nonexistent lower bound (i.e.,
lj = −∞), set bl[j] ≤ −bigbnd, where bigbnd is the value of the optional
argument infiniteboundsize. To specify the jth constraint as an equality, set
bl[j] = bu[j] = β, say, where abs(β) < bigbnd. Note that the lower bound
corresponding to the free row must be set to −∞ and stored in bl[n+ iobj].

bu double array
u, the upper bounds for all the variables and general constraints, in the following
order. The first n elements of bu must contain the bounds on the variables x, and
the next m elements the bounds for the general linear constraintsAx (or slacks s)
and the free row (if any). To specify a nonexistent upper bound (i.e., uj = +∞),
set bu[j] ≥ bigbnd. Note that the upper bound corresponding to the free row
must be set to +∞ and stored in bu[n+ iobj].

start string
Indicates how a starting basis is to be obtained.
start = ′C′: An internal Crash procedure will be used to choose an initial basis
matrix B.
start = ′W′: A basis is already defined in istate (probably from a previous call).

names string array
A set of names associated with the so-called MPSX form of the problem, as
follows:
names[1]: Must contain the name for the problem (or be blank).
names[2]: Must contain the name for the free row (or be blank).
names[3]: Must contain the name for the constraint right-hand side (or be
blank).
names[4]: Must contain the name for the ranges (or be blank).
names[5]: Must contain the name for the bounds (or be blank).

crname string array
The optional column and row names, respectively.

70 e04nk

ns integer
nS , the number of superbasics. For QP problems, ns need not be specified if
start = ′C′, but must retain its value from a previous call when start = ′W′.
For FP and LP problems, ns need not be initialized.

xs double array
The initial values of the variables and slacks (xs). (See the description for is-
tate.)

istate integer array
If start = ′C′, the first n elements of istate and xs must specify the initial states
and values, respectively, of the variables x. (The slacks s need not be initialized.)
An internal Crash procedure is then used to select an initial basis matrix B. The
initial basis matrix will be triangular (neglecting certain small elements in each
column). It is chosen from various rows and columns of

(
A −I

)
. Possible

values for istate[j] are as follows:

leniz integer

lenz integer

optlist options list
Optional parameters may be listed, as shown in the following table:

Name Type Default
Check Frequency integer Default = 60
Crash Option integer Default = 2
Crash Tolerance double Default = 0.1
Defaults
Expand Frequency integer Default = 10000
Factorization Frequency integer Default = 100
Feasibility Tolerance double Default = max(10−6,

√
ε)

Infinite Bound Size double Default = 1020

Infinite Step Size double Default = max(bigbnd, 1020)
Iteration Limit integer Default = max(50, 5 (n+m))
Iters
Itns
List Default for e04nk = list
Nolist Default for e04nk = nolist
LU Factor Tolerance double Default = 100.0
LU Update Tolerance double Default = 10.0
LU Singularity Tolerance double Default = ε0.67

Minimize Default
Maximize
Monitoring File integer Default = −1
Optimality Tolerance double Default = max(10−6,

√
ε)

Partial Price integer Default = 10
Pivot Tolerance double Default = ε0.67

Print Level integer = 0
Rank Tolerance double Default = 100ε
Scale Option integer Default = 2
Scale Tolerance double Default = 0.9
Superbasics Limit integer Default = min(nH + 1, n)

e04nk 71

nnz integer: default = nrow(a)
The number of nonzero elements in A.

nname integer: default = nrow(crname)
The number of column (i.e., variable) and row names supplied in crname.
nname = 1: There are no names. Default names will be used in the printed
output.
nname = n+m: All names must be supplied.

Details

R interface to the NAG Fortran routine E04NKF.

Value

NS integer
The final number of superbasics. This will be zero for FP and LP problems.

XS double array
The final values of the variables and slacks (xs).

ISTATE integer array
The final states of the variables and slacks (xs). The significance of each possi-
ble value of istate[j] is as follows:

MINIZ integer
The minimum value of leniz required to start solving the problem. If ifail = 12,
e04nk may be called again with leniz suitably larger than miniz. (The bigger the
better, since it is not certain how much workspace the basis factors need.)

MINZ integer
The minimum value of lenz required to start solving the problem. If ifail = 13,
e04nk may be called again with lenz suitably larger than minz. (The bigger the
better, since it is not certain how much workspace the basis factors need.)

NINF integer
The number of infeasibilities. This will be zero if ifail = 0, ifail = 1.

SINF double
The sum of infeasibilities. This will be zero if ninf = 0. (Note that e04nk does
not attempt to compute the minimum value of sinf if ifail = 3.)

OBJ double
The value of the objective function.

CLAMDA double array
A set of Lagrange multipliers for the bounds on the variables and the general
constraints. More precisely, the first n elements contain the multipliers (reduced
costs) for the bounds on the variables, and the next m elements contain the mul-
tipliers (shadow prices) for the general linear constraints.

IFAIL integer
ifail = 0 unless the function detects an error or a warning has been flagged (see
the Errors section in Fortran library documentation).

Author(s)

NAG

72 e04nk

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04nkf.pdf

Examples

optlist <- list()

ifail <- 0
qphx = function(nstate, ncolh, x) {

hx <- as.matrix(mat.or.vec(ncolh, 1))
hx[1] <- 2 %*% x[1]
hx[2] <- 2 %*% x[2]
hx[3] <- 2 %*% (x[3] + x[4])
hx[4] <- hx[3]
hx[5] <- 2 %*% x[5]
hx[6] <- 2 %*% (x[6] + x[7])
hx[7] <- hx[6]
list(HX = as.matrix(hx))

}

n <- 7

m <- 8

iobj <- 8

ncolh <- 7

a <- matrix(c(0.02, 0.02, 0.03, 1, 0.7, 0.02, 0.15,
-200, 0.06, 0.75, 0.03, 0.04, 0.05, 0.04, 1, -2000, 0.02,
1, 0.01, 0.08, 0.08, 0.8, -2000, 1, 0.12, 0.02, 0.02, 0.75,
0.04, -2000, 0.01, 0.8, 0.02, 1, 0.02, 0.06, 0.02, -2000,
1, 0.01, 0.01, 0.97, 0.01, 400, 0.97, 0.03, 1, 400), nrow = 48,
ncol = 1, byrow = TRUE)

ha <- matrix(c(7, 5, 3, 1, 6, 4, 2, 8, 7, 6, 5, 4,
3, 2, 1, 8, 2, 1, 4, 3, 7, 6, 8, 1, 7, 3, 4, 6, 2, 8, 5,
6, 7, 1, 2, 3, 4, 8, 1, 2, 3, 6, 7, 8, 7, 2, 1, 8), nrow = 48,
ncol = 1, byrow = TRUE)

ka <- matrix(c(1, 9, 17, 24, 31, 39, 45, 49), nrow = 8,
ncol = 1, byrow = TRUE)

bl <- matrix(c(0, 0, 400, 100, 0, 0, 0, 2000, -1e+25,
-1e+25, -1e+25, -1e+25, 1500, 250, -1e+25), nrow = 15, ncol = 1,
byrow = TRUE)

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04nkf.pdf

e04nq 73

bu <- matrix(c(200, 2500, 800, 700, 1500, 1e+25, 1e+25,
2000, 60, 100, 40, 30, 1e+25, 300, 1e+25), nrow = 15, ncol = 1,
byrow = TRUE)

start <- "C"

names <- matrix(c(" ", " ", " ",
" ", " "), nrow = 5, byrow = TRUE)

crname <- matrix(c("...X1...", "...X2...", "...X3...",
"...X4...", "...X5...", "...X6...", "...X7...", "..ROW1..",
"..ROW2..", "..ROW3..", "..ROW4..", "..ROW5..", "..ROW6..",
"..ROW7..", "..COST.."), nrow = 15, byrow = TRUE)

ns <- -1232765364

xs <- matrix(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0), nrow = 15, ncol = 1, byrow = TRUE)

istate <- as.matrix(mat.or.vec(15, 1))

leniz <- 10000

lenz <- 10000

ans <- e04nk(n, m, iobj, ncolh, qphx, a, ha, ka, bl,
bu, start, names, crname, ns, xs, istate, leniz, lenz, optlist)

ans

e04nq e04nq: LP or QP problem (suitable for sparse problems)

Description

e04nq solves sparse linear programming or convex quadratic programming problems. The initial-
ization function e04np must have been called before calling e04nq.

Usage

e04nq(start, qphx, m, n, lenc, ncolh, iobj, objadd, prob, acol, inda, loca, bl, bu, c, names, helast, hs, x, ns, optlist,
ne = nrow(acol),
nname = nrow(names))

74 e04nq

Arguments

start string
Indicates how a starting basis (and certain other items) will be obtained.
start = ′C′: Requests that an internal Crash procedure be used to choose an
initial basis, unless a Basis file is provided via optional arguments oldbasisfile,
insertfile or loadfile.
start = ′B′: Is the same as start = ′C′ but is more meaningful when a Basis
file is given.
start = ′W′: Means that a basis is already defined in hs and a start point is
already defined in x (probably from an earlier call).

qphx function
For QP problems, you must supply a version of qphx to compute the matrix
product Hx for a given vector x. If H has rows and columns of zeros, it is most
efficient to order x so that the nonlinear variables appear first. For example, if
x = (yz)

T and only y enters the objective quadratically then

Hx =

(
H1 0
0 0

)(
y
z

)
=

(
H1y

0

)
.

In this case, ncolh should be the dimension of y, and qphx should computeH1y.
For FP and LP problems, qphx will never be called by e04nq and hence qphx
may be the dummy function e04nsh.
(HX) = qphx(ncolh,x,nstate)

m integer
m, the number of general linear constraints (or slacks). This is the number of
rows in the linear constraint matrix A, including the free row (if any; see iobj).
Note that A must have at least one row. If your problem has no constraints, or
only upper or lower bounds on the variables, then you must include a dummy
row with sufficiently wide upper and lower bounds (see also acol, inda and loca).

n integer
n, the number of variables (excluding slacks). This is the number of columns in
the linear constraint matrix A.

lenc integer
The number of elements in the constant objective vector c.

ncolh integer
nH , the number of leading nonzero columns of the Hessian matrix H . For FP
and LP problems, ncolh must be set to zero.

iobj integer
If iobj > 0, row iobj of A is a free row containing the nonzero elements of the
vector c appearing in the linear objective term cTx.

objadd double
The constant q, to be added to the objective for printing purposes. Typically
objadd = 0.0E0.

prob string
The name for the problem. It is used in the printed solution and in some func-
tions that output Basis files. A blank name may be used.

acol double array
The nonzero elements of A, ordered by increasing column index. Note that all
elements must be assigned a value in the calling program.

e04nq 75

inda integer array
inda[i] must contain the row index of the nonzero element stored in acol[i] for
i = 1 . . . ne. Thus a pair of values (acol[i]inda[i]) contains a matrix element
and its corresponding row index.

loca integer array
loca[j] must contain the index in acol and inda of the start of the jth column for
j = 1 . . . n. Thus for j = 1 : n, the entries of column j are held in acol[k : l]
and their corresponding row indices are in inda[k : l], where k = loca[j] and
l = loca[j+1]−1. To specify the jth column as empty, set loca[j] = loca[j+1].
Note that the first and last elements of loca must be loca[1] = 1 and loca[n +
1] = ne+ 1. If your problem has no constraints, or just bounds on the variables,
you may include a dummy ‘free’ row with a single (zero) element by setting
ne = 1, acol[1] = 0.0, inda[1] = 1, loca[1] = 1, and loca[j] = 2, for j = 2 :
n+ 1. This row is made ‘free’ by setting its bounds to be bl[n+ 1] = −bigbnd
and bu[n + 1] = bigbnd, where bigbnd is the value of the optional argument
infiniteboundsize.

bl double array
l, the lower bounds for all the variables and general constraints, in the following
order. The first n elements of bl must contain the bounds on the variables x, and
the next m elements the bounds for the general linear constraints Ax (which,
equivalently, are the bounds for the slacks, s) and the free row (if any). To
fix the jth variable, set bl[j] = bu[j] = β, say, where abs(β) < bigbnd. To
specify a nonexistent lower bound (i.e., lj = −∞), set bl[j] ≤ −bigbnd. Here,
bigbnd is the value of the optional argument infiniteboundsize. To specify the
jth constraint as an equality, set bl[n+j] = bu[n+j] = β, say, where abs(β) <
bigbnd. Note that the lower bound corresponding to the free row must be set to
−∞ and stored in bl[n+ iobj].

bu double array
u, the upper bounds for all the variables and general constraints, in the following
order. The first n elements of bu must contain the bounds on the variables x, and
the next m elements the bounds for the general linear constraints Ax (which,
equivalently, are the bounds for the slacks, s) and the free row (if any). To
specify a nonexistent upper bound (i.e., uj = +∞), set bu[j] ≥ bigbnd. Note
that the upper bound corresponding to the free row must be set to +∞ and stored
in bu[n+ iobj].

c double array
Contains the explicit objective vector c (if any). If the problem is of type FP, or
if lenc = 0, then c is not referenced. (In that case, c may be dimensioned eqn1,
or it could be any convenient array.)
double array
Contains the explicit objective vector c (if any). If the problem is of type FP, or
if lenc = 0, then c is not referenced. (In that case, c may be dimensioned eqn1,
or it could be any convenient array.)

names string array
The optional column and row names, respectively.

helast integer array
Defines which variables are to be treated as being elastic in elastic mode. The
allowed values of helast are: helast need not be assigned if optional argument
elasticmode = 0.

76 e04nq

hs integer array
If start = ′C′, ′B′, and a Basis file of some sort is to be input (see the description
of the optional arguments oldbasisfile, insertfile or loadfile), then hs and x need
not be set at all.

x double array
The initial values of the variables x, and, if start = ′W′, the slacks s, i.e., (xs).
(See the description for argument hs.)

ns integer
nS , the number of superbasics. For QP problems, ns need not be specified if
start = ′C′, but must retain its value from a previous call when start = ′W′.
For FP and LP problems, ns need not be initialized.

optlist options list
Optional parameters may be listed, as shown in the following table:

Name Type Default
Check Frequency integer Default = 60
Crash Option integer Default = 3
Crash Tolerance double Default = 0.1
Defaults
Dump File integer Default = 0
Load File integer Default = 0
Elastic Mode integer Default = 1
Elastic Objective integer Default = 1
Elastic Weight double Default = 1.0
Expand Frequency integer Default = 10000
Factorization Frequency integer Default = 100 (LP) or 50 (QP)
Feasibility Tolerance double Default = max

{
10−6

√
ε
}

Infinite Bound Size double Default = 1020

Iterations Limit integer Default = max {1000010max {mn}}
LU Density Tolerance double Default = 0.6

LU Singularity Tolerance double Default = ε
2
3

LU Factor Tolerance double Default = 100.0
LU Update Tolerance double Default = 10.0
LU Partial Pivoting Default
LU Complete Pivoting
LU Rook Pivoting
Minimize Default
Maximize
Feasible Point
New Basis File integer Default = 0
Backup Basis File integer Default = 0
Save Frequency integer Default = 100
Nolist Default
List
Old Basis File integer Default = 0
Optimality Tolerance double Default = max

{
10−6

√
ε
}

Partial Price integer Default = 10 (LP) or 1 (QP)

Pivot Tolerance double Default = ε
2
3

Print File integer Default = 0
Print Frequency integer Default = 100
Print Level integer Default = 1

e04nq 77

Punch File integer Default = 0
Insert File integer Default = 0
QPSolver Cholesky Default
QPSolver CG
QPSolver QN
Reduced Hessian Dimension integer Default = 1 (LP) or min (2000nH + 1n) (QP)
Scale Option integer Default = 2
Scale Tolerance double Default = 0.9
Scale Print
Solution File integer Default = 0
Summary File integer Default = 0
Summary Frequency integer Default = 100
Superbasics Limit integer Default = 1 (LP) or min {nH + 1n} (QP)
Suppress Parameters
System Information No Default
System Information Yes
Timing Level integer Default = 0
Unbounded Step Size double Default = infbnd

ne integer: default = nrow(acol)
The number of nonzero elements in A.

nname integer: default = nrow(names)
The number of column (i.e., variable) and row names supplied in the array
names.
nname = 1: There are no names. Default names will be used in the printed
output.
nname = n+m: All names must be supplied.

Details

R interface to the NAG Fortran routine E04NQF.

Value

HS integer array
The final states of the variables and slacks (xs). The significance of each possi-
ble value of hs[j] is as follows:

X double array
The final values of the variables and slacks (xs).

PI double array
Contains the dual variables π (a set of Lagrange multipliers (shadow prices) for
the general constraints).

RC double array

Contains the reduced costs, g −
(
A −I

)T
π. The vector g is the gradient of

the objective if x is feasible, otherwise it is the gradient of the Phase 1 objective.
In the former case, g (i) = 0, for i = n+ 1 : m, hence rc (n+ 1 : m) = π.

NS integer
The final number of superbasics. This will be zero for FP and LP problems.

78 e04nq

NINF integer
The number of infeasibilities.

SINF double
The sum of the scaled infeasibilities. This will be zero if ninf = 0, and is most
meaningful when scaleoption = 0.

OBJ double
The value of the objective function.

IFAIL integer
ifail = 0 unless the function detects an error or a warning has been flagged (see
the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04nqf.pdf

Examples

optlist<-list()

ifail<-0
qphx=function(ncolh,x,nstate){

hx<-as.matrix(mat.or.vec(ncolh,1))
hx[1]<-2%*%x[1]
hx[2]<-2%*%x[2]
hx[3]<-2%*%(x[3]+x[4])
hx[4]<-hx[3]
hx[5]<-2%*%x[5]
hx[6]<-2%*%(x[6]+x[7])
hx[7]<-hx[6]
list(HX=as.matrix(hx))
}

start<-'C'

m<-8

n<-7

lenc<-0

ncolh<-7

iobj<-8

objadd<-0

prob<-''

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04nqf.pdf

e04uc 79

acol<-matrix(c(0.02,0.02,0.03,1,0.7,0.02,0.15,-200,0.06,0.75,0.03,0.04,0.05,0.04,1,-2000,0.02,1,0.01,0.08,0.08,0.8,-2000,1,0.12,0.02,0.02,0.75,0.04,-2000,0.01,0.8,0.02,1,0.02,0.06,0.02,-2000,1,0.01,0.01,0.97,0.01,400,0.97,0.03,1,400),nrow=48,ncol=1,byrow=TRUE)

inda<-matrix(c(7,5,3,1,6,4,2,8,7,6,5,4,3,2,1,8,2,1,4,3,7,6,8,1,7,3,4,6,2,8,5,6,7,1,2,3,4,8,1,2,3,6,7,8,7,2,1,8),nrow=48,ncol=1,byrow=TRUE)

loca<-matrix(c(1,9,17,24,31,39,45,49),nrow=8,ncol=1,byrow=TRUE)

bl<-matrix(c(0,0,400,100,0,0,0,2000,-9.999999999999999e+24,-9.999999999999999e+24,-9.999999999999999e+24,-9.999999999999999e+24,1500,250,-9.999999999999999e+24),nrow=15,ncol=1,byrow=TRUE)

bu<-matrix(c(200,2500,800,700,1500,9.999999999999999e+24,9.999999999999999e+24,2000,60,100,40,30,9.999999999999999e+24,300,9.999999999999999e+24),nrow=15,ncol=1,byrow=TRUE)

c<-matrix(c(0),nrow=1,ncol=1,byrow=TRUE)

names<-matrix(c('...X1...','...X2...','...X3...','...X4...','...X5...','...X6...','...X7...','..ROW1..','..ROW2..','..ROW3..','..ROW4..','..ROW5..','..ROW6..','..ROW7..','..COST..'),nrow=15,byrow=TRUE)

helast<-matrix(c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),nrow=15,ncol=1,byrow=TRUE)

hs<-matrix(c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),nrow=15,ncol=1,byrow=TRUE)

x<-matrix(c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),nrow=15,ncol=1,byrow=TRUE)

ns<-0

e04nq(start,qphx,m,n,lenc,ncolh,iobj,objadd,prob,acol,inda,loca,bl,bu,c,names,helast,hs,x,ns,optlist)

e04uc e04uc: Minimum, function of several variables, sequential QP
method, nonlinear constraints, using function values and optionally
first derivatives (comprehensive)

Description

e04uc is designed to minimize an arbitrary smooth function subject to constraints (which may in-
clude simple bounds on the variables, linear constraints and smooth nonlinear constraints) using

80 e04uc

a sequential quadratic programming (SQP) method. As many first derivatives as possible should
be supplied by you; any unspecified derivatives are approximated by finite differences. It is not
intended for large sparse problems.

e04uc may also be used for unconstrained, bound-constrained and linearly constrained optimization.

e04uc uses forward communication for evaluating the objective function, the nonlinear constraint
functions, and any of their derivatives.

Usage

e04uc(a, bl, bu, confun, objfun, istate, cjac, clamda, r, x, optlist,
n = nrow(x),
nclin = nrow(a),
ncnln = nrow(cjac))

Arguments

a double array
The ith row of a contains the ith row of the matrix AL of general linear con-
straints in eqn1. That is, the ith row contains the coefficients of the ith general
linear constraint for i = 1 . . . nclin.

bl double array

bu double array
Bl must contain the lower bounds and bu the upper bounds for all the constraints
in the following order. The first n elements of each array must contain the
bounds on the variables, the next nL elements the bounds for the general linear
constraints (if any) and the next nN elements the bounds for the general nonlin-
ear constraints (if any). To specify a nonexistent lower bound (i.e., lj = −∞),
set bl[j] ≤ −bigbnd, and to specify a nonexistent upper bound (i.e., uj = +∞),
set bu[j] ≥ bigbnd; the default value of bigbnd is 1020, but this may be changed
by the optional argument infiniteboundsize. To specify the jth constraint as an
equality, set bl[j] = bu[j] = β, say, where abs(β) < bigbnd.

confun function
confun must calculate the vector c (x) of nonlinear constraint functions and (op-
tionally) its Jacobian (= ∂c

∂x) for a specified n element vector x. If there are
no nonlinear constraints (i.e., ncnln = 0), confun will never be called by e04uc
and confun may be the dummy function e04udm. (e04udm is included in the
NAG Library.) If there are nonlinear constraints, the first call to confun will
occur before the first call to objfun.
(MODE,C,CJAC) = confun(mode,ncnln,n,needc,x,cjac,nstate)

objfun function
objfun must calculate the objective function F (x) and (optionally) its gradient
g (x) = ∂F

∂x for a specified n-vector x.
(MODE,OBJF,OBJGRD) = objfun(mode,n,x,objgrd,nstate)

istate integer array
Need not be set if the (default) optional argument coldstart is used.

cjac double array
In general, cjac need not be initialized before the call to e04uc. However, if
derivativelevel = 2, 3, you may optionally set the constant elements of cjac

e04uc 81

(see argument nstate in the description of confun). Such constant elements need
not be re-assigned on subsequent calls to confun.

clamda double array
Need not be set if the (default) optional argument coldstart is used.

r double array
Need not be initialized if the (default) optional argument coldstart is used.

x double array
An initial estimate of the solution.

optlist options list
Optional parameters may be listed, as shown in the following table:

Name Type Default
Central Difference Interval double Default values are computed
Cold Start Default
Warm Start
Crash Tolerance double Default = 0.01
Defaults
Derivative Level integer Default = 3
Difference Interval double Default values are computed
Feasibility Tolerance double Default =

√
ε

Function Precision double Default = ε0.9

Hessian no Default = NO
Infinite Bound Size double Default = 1020

Infinite Step Size double Default = max(bigbnd, 1020)
Line Search Tolerance double Default = 0.9
Linear Feasibility Tolerance double Default =

√
ε

Nonlinear Feasibility Tolerance double Default = ε0.33 or
√
ε

List
Nolist
Major Iteration Limit integer Default = max(50, 3 (n+ nL) + 10nN)
Iteration Limit
Iters
Itns
Major Print Level integer Default for e04uc = 10
Print Level integer Default for e04uc = 0
Minor Iteration Limit integer Default = max(50, 3 (n+ nL + nN))
Minor Print Level integer Default = 0
Monitoring File integer Default = −1
Optimality Tolerance double Default = ε0.8R
Start Objective Check At Variable integer Default = 1
Stop Objective Check At Variable integer Default = n
Start Constraint Check At Variable integer Default = 1
Stop Constraint Check At Variable integer Default = n
Step Limit double Default = 2.0
Verify Level integer Default = 0
Verify integer
Verify Constraint Gradients integer
Verify Gradients integer
Verify Objective Gradients integer

82 e04uc

n integer: default = nrow(x)
n, the number of variables.

nclin integer: default = nrow(a)
nL, the number of general linear constraints.

ncnln integer: default = nrow(cjac)
nN , the number of nonlinear constraints.

Details

R interface to the NAG Fortran routine E04UCF.

Value

ITER integer
The number of major iterations performed.

ISTATE integer array
The status of the constraints in the QP working set at the point returned in x.
The significance of each possible value of istate[j] is as follows:

C double array
If ncnln > 0, c[i] contains the value of the ith nonlinear constraint function ci
at the final iterate for i = 1 . . . ncnln.

CJAC double array
If ncnln > 0, cjac contains the Jacobian matrix of the nonlinear constraint
functions at the final iterate, i.e., cjac[i, j] contains the partial derivative of the
ith constraint function with respect to the jth variable for j = 1 . . . n for i =
1 . . . ncnln. (See the discussion of argument cjac under confun.)

CLAMDA double array
The values of the QP multipliers from the last QP subproblem. clamda[j]
should be non-negative if istate[j] = 1 and non-positive if istate[j] = 2.

OBJF double
The value of the objective function at the final iterate.

OBJGRD double array
The gradient of the objective function at the final iterate (or its finite difference
approximation).

R double array
If hessian = NO, r contains the upper triangular Cholesky factor R of QT H̃Q,
an estimate of the transformed and reordered Hessian of the Lagrangian at x
(see eqn6 in the optional parameter description in the Fortran Library documen-
tation). If hessian = YES, r contains the upper triangular Cholesky factor
R of H , the approximate (untransformed) Hessian of the Lagrangian, with the
variables in the natural order.

X double array
The final estimate of the solution.

IFAIL integer
ifail = 0 unless the function detects an error or a warning has been flagged (see
the Errors section in Fortran library documentation).

e04uc 83

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04ucf.pdf

Examples

optlist <- list()

ifail <- 0
confun = function(mode, ncnln, n, needc, x, cjac,

nstate) {
ldcj <- nrow(cjac)

c <- as.matrix(mat.or.vec(ncnln, 1))

if (nstate == 1) {

cjac <- as.matrix(mat.or.vec(ldcj, n))

}

if (needc[1] > 0) {

if (mode == 0 || mode == 2) {

c[1] <- x[1]^2 + x[2]^2 + x[3]^2 + x[4]^2

}
if (mode == 1 || mode == 2) {

cjac[1, 1] <- 2 %*% x[1]

cjac[1, 2] <- 2 %*% x[2]

cjac[1, 3] <- 2 %*% x[3]

cjac[1, 4] <- 2 %*% x[4]

}
}

if (needc[2] > 0) {

if (mode == 0 || mode == 2) {

c[2] <- x[1] %*% x[2] %*% x[3] %*% x[4]

}
if (mode == 1 || mode == 2) {

cjac[2, 1] <- x[2] %*% x[3] %*% x[4]

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04ucf.pdf

84 e04uc

cjac[2, 2] <- x[1] %*% x[3] %*% x[4]

cjac[2, 3] <- x[1] %*% x[2] %*% x[4]

cjac[2, 4] <- x[1] %*% x[2] %*% x[3]

}
}
list(MODE = as.integer(mode), C = as.matrix(c), CJAC = as.matrix(cjac))

}
objfun = function(mode, n, x, objgrd, nstate) {

if (mode == 0 || mode == 2) {

objf <- x[1] %*% x[4] %*% (x[1] + x[2] + x[3]) + x[3]

}
else {

objf <- 0
}

if (mode == 1 || mode == 2) {

objgrd[1] <- x[4] %*% (2 %*% x[1] + x[2] + x[3])

objgrd[2] <- x[1] %*% x[4]

objgrd[3] <- x[1] %*% x[4] + 1

objgrd[4] <- x[1] %*% (x[1] + x[2] + x[3])

}
list(MODE = as.integer(mode), OBJF = objf, OBJGRD = as.matrix(objgrd))

}

a <- matrix(c(1, 1, 1, 1), nrow = 1, ncol = 4, byrow = TRUE)

bl <- matrix(c(1, 1, 1, 1, -1e+25, -1e+25, 25), nrow = 7,
ncol = 1, byrow = TRUE)

bu <- matrix(c(5, 5, 5, 5, 20, 40, 1e+25), nrow = 7,
ncol = 1, byrow = TRUE)

istate <- as.matrix(mat.or.vec(7, 1))

cjac <- as.matrix(mat.or.vec(2, 4))

clamda <- as.matrix(mat.or.vec(7, 1))

e04uf 85

r <- as.matrix(mat.or.vec(4, 4))

x <- matrix(c(1, 5, 5, 1), nrow = 4, ncol = 1, byrow = TRUE)

e04uc(a, bl, bu, confun, objfun, istate, cjac, clamda,
r, x, optlist)

e04uf e04uf: Minimum, function of several variables, sequential QP method,
nonlinear constraints, using function values and optionally first
derivatives (reverse communication, comprehensive)

Description

e04uf is designed to minimize an arbitrary smooth function subject to constraints (which may in-
clude simple bounds on the variables, linear constraints and smooth nonlinear constraints) using
a sequential quadratic programming (SQP) method. As many first derivatives as possible should
be supplied by you; any unspecified derivatives are approximated by finite differences. It is not
intended for large sparse problems.

e04uf may also be used for unconstrained, bound-constrained and linearly constrained optimization.

e04uf uses reverse communication for evaluating the objective function, the nonlinear constraint
functions and any of their derivatives.

Usage

e04uf(irevcm, nclin, a, bl, bu, iter, istate, c, cjac, clamda, objf, objgrd, r, x, iwork, work, cwsav, lwsav, iwsav, rwsav, optlist,
n = nrow(objgrd),
ncnln = nrow(c))

Arguments

irevcm integer
Must be set to 0.
must remain unchanged, unless you wish to terminate the solution to the cur-
rent problem. In this case irevcm may be set to a negative value and then e04uf
will take a final exit with ifail set to this value of irevcm.

nclin integer
nL, the number of general linear constraints.

a double array
The ith row of the array a must contain the ith row of the matrix AL of general
linear constraints in eqn1. That is, the ith row contains the coefficients of the ith
general linear constraint for i = 1 . . . nclin.

bl double array

86 e04uf

bu double array
Bl must contain the lower bounds and bu the upper bounds, for all the con-
straints in the following order. The first n elements of each array must contain
the bounds on the variables, the next nL elements the bounds for the general
linear constraints (if any) and the next nN elements the bounds for the gen-
eral nonlinear constraints (if any). To specify a nonexistent lower bound (i.e.,
lj = −∞), set bl[j] ≤ −bigbnd, and to specify a nonexistent upper bound (i.e.,
uj = +∞), set bu[j] ≥ bigbnd; the default value of bigbnd is 1020, but this
may be changed by the optional argument infiniteboundsize. To specify the jth
constraint as an equality, set bl[j] = bu[j] = β, say, where abs(β) < bigbnd.

iter integer
Must remain unchanged from a previous call to e04uf.

istate integer array
Need not be set if the (default) optional argument coldstart is used.

c double array
Need not be set.
If irevcm = 4, 6 and needc[i] > 0, c[i] must contain the value of the ith
constraint at x. The remaining elements of c, corresponding to the non-positive
elements of needc, are ignored.

cjac double array
In general, cjac need not be initialized before the call to e04uf. However, if the
optional argument derivativelevel = 2, 3, you may optionally set the constant
elements of cjac. Such constant elements need not be re-assigned on subsequent
intermediate exits.
If irevcm = 5, 6 and needc[i] > 0, the ith row of cjac must contain the available
elements of the vector∇ci given by

∇ci =

(
∂ci
∂x1

,
∂ci
∂x2

, . . . ,
∂ci
∂xn

)T
,

where ∂ci
∂xj

is the partial derivative of the ith constraint with respect to the jth
variable, evaluated at the point x. The remaining rows of cjac, corresponding to
non-positive elements of needc, are ignored.

clamda double array
Need not be set if the (default) optional argument coldstart is used.

objf double
Need not be set.
If irevcm = 1, 3, objf must be set to the value of the objective function at x.

objgrd double array
Need not be set.
If irevcm = 2, 3, objgrd must contain the available elements of the gradient
evaluated at x.

r double array
Need not be initialized if the (default) optional argument coldstart is used.

x double array
An initial estimate of the solution.

iwork integer array

e04uf 87

work double array

cwsav string arraystring array

lwsav boolean array

iwsav integer array

rwsav double array
The arrays lwsav, iwsav, rwsav and cwsav must not be altered between calls to
any of the functions e04wb, e04uf, e04ud e04ue.

optlist options list
Optional parameters may be listed, as shown in the following table:

Name Type Default
Central Difference Interval double Default values are computed
Cold Start Default
Warm Start
Crash Tolerance double Default = 0.01
Defaults
Derivative Level integer Default = 3
Difference Interval double Default values are computed
Feasibility Tolerance double Default =

√
ε

Function Precision double Default = ε0.9

Hessian Default = NO
Infinite Bound Size double Default = 1020

Infinite Step Size double Default = max(bigbnd, 1020)
Line Search Tolerance double Default = 0.9
Linear Feasibility Tolerance double Default =

√
ε

Nonlinear Feasibility Tolerance double Default = ε0.33 or
√
ε

List
Nolist
Major Iteration Limit integer Default = max(50, 3 (n+ nL) + 10nN)
Iteration Limit
Iters
Itns
Major Print Level integer
Major Print Level integer
Print Level = 0
Print Level = 0
Minor Iteration Limit integer Default = max(50, 3 (n+ nL + nN))
Minor Print Level integer Default = 0
Monitoring File integer Default = −1
Optimality Tolerance double Default = ε0.8r
Start Objective Check At Variable integer Default = 1
Stop Objective Check At Variable integer Default = n
Start Constraint Check At Variable integer Default = 1
Stop Constraint Check At Variable integer Default = n
Step Limit double Default = 2.0
Verify Level integer Default = 0
Verify
Verify Constraint Gradients
Verify Gradients
Verify Objective Gradients

88 e04uf

n integer: default = nrow(objgrd)
n, the number of variables.

ncnln integer: default = nrow(c)
nN , the number of nonlinear constraints.

Details

R interface to the NAG Fortran routine E04UFF.

Value

IREVCM integer
Specifies what values the calling program must assign to arguments of e04uf
before re-entering the function.
irevcm = 1: Set objf to the value of the objective function F (x).
irevcm = 2: Set objgrd[< j] to the value ∂F

∂xj
if available for j = 1 . . . n.

irevcm = 3: Set objf and objgrd[j] as for irevcm = 1 and irevcm = 2.
irevcm = 4: Set c[i] to the value of the constraint function ci (x), for each i
such that needc[i] > 0.
irevcm = 5: Set cjac[i, j] to the value ∂ci

∂xj
if available, for each i such that

needc[i] > 0 and j = 1, 2, . . . , n.
irevcm = 6: Set c[i] and cjac[i, j] as for irevcm = 4 and irevcm = 5.
irevcm = 0.

ITER integer
The number of major iterations performed.

ISTATE integer array
The status of the constraints in the QP working set at the point returned in x.
The significance of each possible value of istate[j] is as follows:

C double array
If ncnln > 0, c[i] contains the value of the ith nonlinear constraint function ci
at the final iterate for i = 1 . . . ncnln.

CJAC double array
If ncnln > 0, cjac contains the Jacobian matrix of the nonlinear constraint
functions at the final iterate, i.e., cjac[i, j] contains the partial derivative of the
ith constraint function with respect to the jth variable for j = 1 . . . n for i =
1 . . . ncnln.

CLAMDA double array
The values of the QP multipliers from the last QP subproblem. clamda[j]
should be non-negative if istate[j] = 1 and non-positive if istate[j] = 2.

OBJF double
The value of the objective function at the final iterate.

OBJGRD double array
The gradient of the objective function at the final iterate (or its finite difference
approximation).

R double array
If hessian = NO, r contains the upper triangular Cholesky factor R of QT H̃Q,
an estimate of the transformed and reordered Hessian of the Lagrangian at x
(see eqn6 in the optional parameter description in the Fortran Library documen-
tation).

e04uf 89

X double array
The point x at which the objective function, constraint functions or their deriva-
tives are to be evaluated.
The final estimate of the solution.

NEEDC integer array
If irevcm ≥ 4, needc specifies the indices of the elements of c and/or cjac that
must be assigned. If needc[i] > 0, then the ith element of c and/or the available
elements of the ith row of cjac must be evaluated at x.

IWORK integer array

WORK double array
The amounts of workspace provided and required may be (by default for e04uf)
output on the current advisory message unit (as defined by x04ab). As an alter-
native to computing liwork and lwork from the formulae given above, you may
prefer to obtain appropriate values from the output of a preliminary run with
liwork and lwork set to 1. (e04uf will then terminate with ifail = 9.)

CWSAV string array
The arrays lwsav, iwsav, rwsav and cwsav must not be altered between calls to
any of the functions e04wb, e04uf, e04ud e04ue.

string array

The arrays lwsav, iwsav, rwsav and cwsav must not be altered between calls to any of the functions
e04wb, e04uf, e04ud e04ue.

LWSAV boolean array
The arrays lwsav, iwsav, rwsav and cwsav must not be altered between calls to
any of the functions e04wb, e04uf, e04ud e04ue.

IWSAV integer array
The arrays lwsav, iwsav, rwsav and cwsav must not be altered between calls to
any of the functions e04wb, e04uf, e04ud e04ue.

RWSAV double array
The arrays lwsav, iwsav, rwsav and cwsav must not be altered between calls to
any of the functions e04wb, e04uf, e04ud e04ue.

IFAIL integer
ifail = 0 unless the function detects an error or a warning has been flagged (see
the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04uff.pdf

Examples

optlist <- list()

ifail <- 0
iwork <- as.matrix(mat.or.vec(0, 0))

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04uff.pdf

90 e04uf

work <- as.matrix(mat.or.vec(0, 0))
cwsav <- as.matrix(mat.or.vec(0, 0))
lwsav <- as.matrix(mat.or.vec(0, 0))
iwsav <- as.matrix(mat.or.vec(0, 0))
rwsav <- as.matrix(mat.or.vec(0, 0))

irevcm <- 0

nclin <- 1

a <- matrix(c(1, 1, 1, 1), nrow = 1, ncol = 4, byrow = TRUE)

bl <- matrix(c(1, 1, 1, 1, -1e+25, -1e+25, 25), nrow = 7,
ncol = 1, byrow = TRUE)

bu <- matrix(c(5, 5, 5, 5, 20, 40, 1e+25), nrow = 7,
ncol = 1, byrow = TRUE)

iter <- 0

istate <- as.matrix(mat.or.vec(7, 1))

c <- matrix(c(0, 0), nrow = 2, ncol = 1, byrow = TRUE)

cjac <- matrix(c(0, 0, 0, 0, 0, 0, 0, 0), nrow = 2,
ncol = 4, byrow = TRUE)

clamda <- as.matrix(mat.or.vec(7, 1))

objf <- 0

objgrd <- as.matrix(mat.or.vec(4, 1))

r <- as.matrix(mat.or.vec(4, 4))

x <- matrix(c(1, 5, 5, 1), nrow = 4, ncol = 1, byrow = TRUE)

iwork <- as.matrix(mat.or.vec(17, 1))

work <- as.matrix(mat.or.vec(192, 1))

if (ifail == 0) {

ans <- e04uf(irevcm, nclin, a, bl, bu, iter, istate, c, cjac,
clamda, objf, objgrd, r, x, iwork, work, cwsav, lwsav,

e04uf 91

iwsav, rwsav, optlist)
irevcm <- ans$IREVCM
iter <- ans$ITER
istate <- ans$ISTATE
c <- ans$C
cjac <- ans$CJAC
clamda <- ans$CLAMDA
objf <- ans$OBJF
objgrd <- ans$OBJGRD
r <- ans$R
x <- ans$X
needc <- ans$NEEDC
iwork <- ans$IWORK
work <- ans$WORK
cwsav <- ans$CWSAV
lwsav <- ans$LWSAV
iwsav <- ans$IWSAV
rwsav <- ans$RWSAV
ifail <- ans$IFAIL
while (irevcm > 0) {

if (irevcm == 1 || irevcm == 3) {

objf <- x[1] %*% x[4] %*% (x[1] + x[2] + x[3]) +
x[3]

}
if (irevcm == 2 || irevcm == 3) {

objgrd[1] <- x[4] %*% (2 %*% x[1] + x[2] + x[3])

objgrd[2] <- x[1] %*% x[4]

objgrd[3] <- x[1] %*% x[4] + 1

objgrd[4] <- x[1] %*% (x[1] + x[2] + x[3])

}
if (irevcm == 4 || irevcm == 6) {

if (needc[1] > 0) {

c[1] <- x[1]^2 + x[2]^2 + x[3]^2 + x[4]^2

}
if (needc[2] > 0) {

c[2] <- x[1] %*% x[2] %*% x[3] %*% x[4]

}
}
if (irevcm == 5 || irevcm == 6) {

if (needc[1] > 0) {

cjac[1, 1] <- 2 %*% x[1]

cjac[1, 2] <- 2 %*% x[2]

92 e04uf

cjac[1, 3] <- 2 %*% x[3]

cjac[1, 4] <- 2 %*% x[4]

}
if (needc[2] > 0) {

cjac[2, 1] <- x[2] %*% x[3] %*% x[4]

cjac[2, 2] <- x[1] %*% x[3] %*% x[4]

cjac[2, 3] <- x[1] %*% x[2] %*% x[4]

cjac[2, 4] <- x[1] %*% x[2] %*% x[3]

}
}
ans <- e04uf(irevcm, nclin, a, bl, bu, iter, istate,

c, cjac, clamda, objf, objgrd, r, x, iwork, work,
cwsav, lwsav, iwsav, rwsav, optlist)

irevcm <- ans$IREVCM
iter <- ans$ITER
istate <- ans$ISTATE
c <- ans$C
cjac <- ans$CJAC
clamda <- ans$CLAMDA
objf <- ans$OBJF
objgrd <- ans$OBJGRD
r <- ans$R
x <- ans$X
needc <- ans$NEEDC
iwork <- ans$IWORK
work <- ans$WORK
cwsav <- ans$CWSAV
lwsav <- ans$LWSAV
iwsav <- ans$IWSAV
rwsav <- ans$RWSAV
ifail <- ans$IFAIL

}
if (ifail == 0) {

writeLines(toString(cat(sprintf("\n Varbl Istate Value Lagr Mult\n",
"\n"))))

for (i in c(1:4)) {
istate <- ans$ISTATE

x <- ans$X

clamda <- ans$CLAMDA

writeLines(toString(cat(sprintf(" V %3d %3d %14.4f %12.4f \n",
i, istate[i], x[i], clamda[i], "\n"))))

}

e04ug 93

ax <- a %*% x
writeLines(toString(cat(sprintf("\n L Con Istate Value Lagr Mult\n",

"\n"))))

for (i in c(5:(4 + nclin))) {
j <- i - 4

istate <- ans$ISTATE

clamda <- ans$CLAMDA
writeLines(toString(cat(sprintf(" L %3d %3d %14.4f %12.4f\n",

j, istate[i], ax[j], clamda[i], "\n"))))

}
writeLines(toString(cat(sprintf("\n L Con Istate Value Lagr Mult\n",

"\n"))))

for (i in c((5 + nclin):(6 + nclin))) {
j <- i - 4 - nclin

istate <- ans$ISTATE

c <- ans$C

clamda <- ans$CLAMDA

writeLines(toString(cat(sprintf(" N %3d %3d %14.4f%12.4f\n",
j, istate[i], c[j], clamda[i], "\n"))))

}
objf <- ans$OBJF

writeLines(toString(cat(sprintf("\n Final objective value = %15.7f\n",
objf, "\n"))))

}
}

e04ug e04ug: NLP problem (sparse)

Description

e04ug solves sparse nonlinear programming problems.

Usage

e04ug(confun, objfun, n, m, ncnln, nonln, njnln, iobj, a, ha, ka, bl, bu, start, names, ns, xs, istate, clamda, optlist,

94 e04ug

nnz = nrow(a),
nname = nrow(names),
leniz = (1000),
lenz = (1000))

Arguments

confun function
confun must calculate the vector F (x) of nonlinear constraint functions and
(optionally) its Jacobian

(
= ∂F

∂x

)
for a specified n′′1 (≤ n) element vector x. If

there are no nonlinear constraints (i.e., ncnln = 0), confun will never be called
by e04ug and confun may be the dummy function e04ugm. (e04ugm is included
in the NAG Library.) If there are nonlinear constraints, the first call to confun
will occur before the first call to objfun.
(MODE,F,FJAC) = confun(mode,ncnln,njnln,nnzjac,x,fjac,nstate)

objfun function
objfun must calculate the nonlinear part of the objective function f (x) and (op-
tionally) its gradient

(
= ∂f

∂x

)
for a specified n′1 (≤ n) element vector x. If

there are no nonlinear objective variables (i.e., nonln = 0), objfun will never
be called by e04ug and objfun may be the dummy function e04ugn. (e04ugn is
included in the NAG Library.)
(MODE,OBJF,OBJGRD) = objfun(mode,nonln,x,objgrd,nstate)

n integer
n, the number of variables (excluding slacks). This is the number of columns in
the full Jacobian matrix A.

m integer
m, the number of general constraints (or slacks). This is the number of rows in
A, including the free row (if any; see iobj). Note that A must contain at least
one row. If your problem has no constraints, or only upper and lower bounds on
the variables, then you must include a dummy ‘free’ row consisting of a single
(zero) element subject to ‘infinite’ upper and lower bounds. Further details can
be found under the descriptions for iobj, nnz, a, ha, ka, bl and bu.

ncnln integer
nN , the number of nonlinear constraints.

nonln integer
n′1, the number of nonlinear objective variables. If the objective function is non-
linear, the leading n′1 columns of A belong to the nonlinear objective variables.
(See also the description for njnln.)

njnln integer
n′′1 , the number of nonlinear Jacobian variables. If there are any nonlinear con-
straints, the leading n′′1 columns ofA belong to the nonlinear Jacobian variables.
If n′1 > 0 and n′′1 > 0, the nonlinear objective and Jacobian variables overlap.
The total number of nonlinear variables is given by n̄ = max(n′1, n

′′
1).

iobj integer
If iobj > ncnln, row iobj of A is a free row containing the nonzero elements of
the linear part of the objective function.
iobj = 0: There is no free row.
iobj = −1: There is a dummy ‘free’ row.

e04ug 95

a double array
The nonzero elements of the Jacobian matrix A, ordered by increasing column
index. Since the constraint Jacobian matrix J (x′′) must always appear in the top
left-hand corner of A, those elements in a column associated with any nonlinear
constraints must come before any elements belonging to the linear constraint
matrix G and the free row (if any; see iobj).

ha integer array
ha[i] must contain the row index of the nonzero element stored in a[i] for
i = 1 . . . nnz. The row indices for a column may be supplied in any order
subject to the condition that those elements in a column associated with any
nonlinear constraints must appear before those elements associated with any
linear constraints (including the free row, if any). Note that confun must define
the Jacobian elements in the same order. If iobj = −1, set ha[1] = 1.

ka integer array
ka[j] must contain the index in a of the start of the jth column for j = 1 . . . n.
To specify the jth column as empty, set ka[j] = ka[j + 1]. Note that the first
and last elements of ka must be such that ka[1] = 1 and ka[n+ 1] = nnz + 1.
If iobj = −1, set ka[j] = 2 for j = 2 . . . n.

bl double array
l, the lower bounds for all the variables and general constraints, in the following
order. The first n elements of bl must contain the bounds on the variables x,
the next ncnln elements the bounds for the nonlinear constraints F (x) (if any)
and the next (m−ncnln) elements the bounds for the linear constraints Gx and
the free row (if any). To specify a nonexistent lower bound (i.e., lj = −∞),
set bl[j] ≤ −bigbnd. To specify the jth constraint as an equality, set bl[j] =
bu[j] = β, say, where abs(β) < bigbnd. If iobj = −1, set bl[n+ abs (iobj)] ≤
−bigbnd.

bu double array
u, the upper bounds for all the variables and general constraints, in the following
order. The first n elements of bu must contain the bounds on the variables x, the
next ncnln elements the bounds for the nonlinear constraints F (x) (if any) and
the next (m− ncnln) elements the bounds for the linear constraints Gx and the
free row (if any). To specify a nonexistent upper bound (i.e., uj = +∞), set
bu[j] ≥ bigbnd. To specify the jth constraint as an equality, set bu[j] = bl[j] =
β, say, where abs(β) < bigbnd. If iobj = −1, set bu[n+abs (iobj)] ≥ bigbnd.

start string
Indicates how a starting basis is to be obtained.
start = ′C′: An internal Crash procedure will be used to choose an initial basis.
start = ′W′: A basis is already defined in istate and ns (probably from a previous
call).

names string array
Specifies the column and row names to be used in the printed output.

ns integer
nS , the number of superbasics. It need not be specified if start = ′C′, but must
retain its value from a previous call when start = ′W′.

xs double array
The initial values of the variables and slacks (xs). (See the description for is-
tate.)

96 e04ug

istate integer array
If start = ′C′, the first n elements of istate and xs must specify the initial states
and values, respectively, of the variables x. (The slacks s need not be initialized.)
An internal Crash procedure is then used to select an initial basis matrix B. The
initial basis matrix will be triangular (neglecting certain small elements in each
column). It is chosen from various rows and columns of

(
A −I

)
. Possible

values for istate[j] are as follows:

clamda double array
If ncnln > 0, clamda[j] must contain a Lagrange multiplier estimate for the
jth nonlinear constraint Fj (x) for j = n + 1 . . . n + ncnln. If nothing special
is known about the problem, or there is no wish to provide special information,
you may set clamda[j] = 0.0. The remaining elements need not be set.

optlist options list
Optional parameters may be listed, as shown in the following table:

Name Type Default
Central Difference Interval double Default = 3

√
functionprecision

Check Frequency integer Default = 60
Crash Option integer Default = 0 or 3
Crash Tolerance double Default = 0.1
Defaults
Derivative Level integer Default = 3
Derivative Linesearch Default
Nonderivative Linesearch
Elastic Weight double Default = 1.0 or 100.0
Expand Frequency integer Default = 10000
Factorization Frequency integer Default = 50 or 100
Infeasible Exit Default
Feasible Exit
Minimize Default
Maximize
Feasible Point
Forward Difference Interval double Default =

√
functionprecision

Function Precision double Default = ε0.8

Hessian Frequency integer Default = 99999999
Hessian Full Memory Default when n̄ < 75
Hessian Limited Memory Default when n̄ ≥ 75
Hessian Updates integer Default = 20or99999999
Infinite Bound Size double Default = 1020

Iteration Limit integer Default = 10000
Linesearch Tolerance double Default = 0.9
List Default for e04ug = list
Nolist Default for e04ug = nolist
LU Density Tolerance double Default = 0.6
LU Singularity Tolerance double Default = ε0.67

LU Factor Tolerance double Default = 5.0 or 100.0
LU Update Tolerance double Default = 5.0 or 10.0
Major Feasibility Tolerance double Default =

√
ε

Major Iteration Limit integer Default = 1000
Major Optimality Tolerance double Default =

√
ε

Optimality Tolerance double
Major Print Level integer = 0

e04ug 97

Print Level
Major Step Limit double Default = 2.0
Minor Feasibility Tolerance double Default =

√
ε

Feasibility Tolerance double
Minor Iteration Limit integer Default = 500
Minor Optimality Tolerance double Default =

√
ε

Minor Print Level integer Default = 0
Monitoring File integer Default = −1
Partial Price integer Default = 1or10
Pivot Tolerance double Default = ε0.67

Scale Option integer Default = 1or2
Scale Tolerance double Default = 0.9
Start Objective Check At Column integer Default = 1
Stop Objective Check At Column integer Default = n′1
Start Constraint Check At Column integer Default = 1
Stop Constraint Check At Column integer Default = n′′1
Superbasics Limit integer Default = min(500, n̄+ 1)
Unbounded Objective double Default = 1015

Unbounded Step Size double Default = max
(
bigbnd, 1020

)
Verify Level integer Default = 0
Violation Limit double Default = 10.0

nnz integer: default = nrow(a)
The number of nonzero elements in A (including the Jacobian for any nonlinear
constraints). If iobj = −1, set nnz = 1.

nname integer: default = nrow(names)
The number of column (i.e., variable) and row (i.e., constraint) names supplied
in names.
nname = 1: There are no names. Default names will be used in the printed
output.
nname = n+m: All names must be supplied.

leniz integer: default = (max(500,(n+m)))
integer: default = (max(500,(n+m)))

lenz integer: default = (500)
integer: default = (500)

Details

R interface to the NAG Fortran routine E04UGF.

Value

A double array
Elements in the nonlinear part corresponding to nonlinear Jacobian variables are
overwritten.

NS integer
The final number of superbasics.

XS double array
The final values of the variables and slacks (xs).

98 e04ug

ISTATE integer array
The final states of the variables and slacks (xs). The significance of each possi-
ble value of istate[j] is as follows:

CLAMDA double array
A set of Lagrange multipliers for the bounds on the variables (reduced costs)
and the general constraints (shadow costs). More precisely, the first n elements
contain the multipliers for the bounds on the variables, the next ncnln elements
contain the multipliers for the nonlinear constraints F (x) (if any) and the next
(m− ncnln) elements contain the multipliers for the linear constraints Gx and
the free row (if any).

MINIZ integer
The minimum value of leniz required to start solving the problem. If ifail = 12,
e04ug may be called again with leniz suitably larger than miniz. (The bigger the
better, since it is not certain how much workspace the basis factors need.)

MINZ integer
The minimum value of lenz required to start solving the problem. If ifail = 13,
e04ug may be called again with lenz suitably larger than minz. (The bigger the
better, since it is not certain how much workspace the basis factors need.)

NINF integer
The number of constraints that lie outside their bounds by more than the value
of the optional argument minorfeasibilitytolerance.

SINF double
The sum of the infeasibilities of constraints that lie outside their bounds by more
than the value of the optional argument minorfeasibilitytolerance.

OBJ double
The value of the objective function.

IFAIL integer
ifail = 0 unless the function detects an error or a warning has been flagged (see
the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04ugf.pdf

Examples

optlist <- list()

ifail <- 0
confun = function(mode, ncnln, njnln, nnzjac, x, fjac,

nstate) {

f <- as.matrix(mat.or.vec(ncnln, 1))

if (mode == 0 || mode == 2) {

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04ugf.pdf

e04ug 99

f[1] <- 1000 %*% sin(-x[1] - 0.25) + 1000 %*% sin(-x[2] -
0.25)

f[2] <- 1000 %*% sin(x[1] - 0.25) + 1000 %*% sin(x[1] -
x[2] - 0.25)

f[3] <- 1000 %*% sin(x[2] - x[1] - 0.25) + 1000 %*% sin(x[2] -
0.25)

}

if (mode == 1 || mode == 2) {

fjac[1] <- -1000 %*% cos(-x[1] - 0.25)

fjac[2] <- 1000 %*% cos(x[1] - 0.25) + 1000 %*% cos(x[1] -
x[2] - 0.25)

fjac[3] <- -1000 %*% cos(x[2] - x[1] - 0.25)

fjac[4] <- -1000 %*% cos(-x[2] - 0.25)

fjac[5] <- -1000 %*% cos(x[1] - x[2] - 0.25)

fjac[6] <- 1000 %*% cos(x[2] - x[1] - 0.25) + 1000 %*%
cos(x[2] - 0.25)

}
list(MODE = as.integer(mode), F = as.matrix(f), FJAC = as.matrix(fjac))

}
objfun = function(mode, nonln, x, objgrd, nstate) {

if (mode == 0 || mode == 2) {

objf <- 1e-06 %*% x[3]^3 + 2e-06 %*% x[4]^3/3

}

if (mode == 1 || mode == 2) {

objgrd[1] <- 0

objgrd[2] <- 0

objgrd[3] <- 3e-06 %*% x[3]^2

objgrd[4] <- 2e-06 %*% x[4]^2

}
list(MODE = as.integer(mode), OBJF = objf, OBJGRD = as.matrix(objgrd))

}

n <- 4

m <- 6

100 e04ug

ncnln <- 3

nonln <- 4

njnln <- 2

iobj <- 6

a <- matrix(c(1e+25, 1e+25, 1e+25, 1, -1, 1e+25, 1e+25,
1e+25, -1, 1, 3, -1, -1, 2), nrow = 14, ncol = 1, byrow = TRUE)

ha <- matrix(c(1, 2, 3, 5, 4, 1, 2, 3, 5, 4, 6, 1,
2, 6), nrow = 14, ncol = 1, byrow = TRUE)

ka <- matrix(c(1, 6, 11, 13, 15), nrow = 5, ncol = 1,
byrow = TRUE)

bl <- matrix(c(-0.55, -0.55, 0, 0, -894.8, -894.8,
-1294.8, -0.55, -0.55, -1e+25), nrow = 10, ncol = 1, byrow = TRUE)

bu <- matrix(c(0.55, 0.55, 1200, 1200, -894.8, -894.8,
-1294.8, 1e+25, 1e+25, 1e+25), nrow = 10, ncol = 1, byrow = TRUE)

start <- "C"

names <- matrix(c("Varble 1", "Varble 2", "Varble 3",
"Varble 4", "NlnCon 1", "NlnCon 2", "NlnCon 3", "LinCon 1",
"LinCon 2", "Free Row"), nrow = 10, byrow = TRUE)

ns <- 0

xs <- matrix(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0), nrow = 10,
ncol = 1, byrow = TRUE)

istate <- as.matrix(mat.or.vec(10, 1))

clamda <- matrix(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
nrow = 10, ncol = 1, byrow = TRUE)

leniz <- 1000

e04us 101

lenz <- 1000

e04ug(confun, objfun, n, m, ncnln, nonln, njnln,
iobj, a, ha, ka, bl, bu, start, names, ns, xs, istate, clamda,
optlist)

e04us e04us: Minimum of a sum of squares, nonlinear constraints, sequen-
tial QP method, using function values and optionally first derivatives
(comprehensive)

Description

e04us is designed to minimize an arbitrary smooth sum of squares function subject to constraints
(which may include simple bounds on the variables, linear constraints and smooth nonlinear con-
straints) using a sequential quadratic programming (SQP) method. As many first derivatives as pos-
sible should be supplied by you; any unspecified derivatives are approximated by finite differences.
See the description of the optional argument derivativelevel, in the Fortran library documentation.
It is not intended for large sparse problems.

e04us may also be used for unconstrained, bound-constrained and linearly constrained optimization.

Usage

e04us(a, bl, bu, y, confun, objfun, istate, cjac, fjac, clamda, r, x, optlist,
m = nrow(y),
n = nrow(x),
nclin = nrow(a),
ncnln = nrow(cjac))

Arguments

a double array
The ith row of a contains the ith row of the matrix AL of general linear con-
straints in eqn1. That is, the ith row contains the coefficients of the ith general
linear constraint for i = 1 . . . nclin.

bl double array

bu double array
Must contain the lower bounds and bu the upper bounds, for all the constraints in
the following order. The first n elements of each array must contain the bounds
on the variables, the next nL elements the bounds for the general linear con-
straints (if any) and the next nN elements the bounds for the general nonlinear
constraints (if any). To specify a nonexistent lower bound (i.e., lj = −∞), set
bl[j] ≤ −bigbnd, and to specify a nonexistent upper bound (i.e., uj = +∞), set
bu[j] ≥ bigbnd; the default value of bigbnd is 1020, but this may be changed
by the optional argument infiniteboundsize. To specify the jth constraint as an
equality, set bl[j] = bu[j] = β, say, where abs(β) < bigbnd.

y double array
The coefficients of the constant vector y of the objective function.

102 e04us

confun function
confun must calculate the vector c (x) of nonlinear constraint functions and (op-
tionally) its Jacobian (= ∂c

∂x) for a specified n element vector x. If there are
no nonlinear constraints (i.e., ncnln = 0), confun will never be called by e04us
and confun may be the dummy function e04udm. (e04udm is included in the
NAG Library.) If there are nonlinear constraints, the first call to confun will
occur before the first call to objfun.
(MODE,C,CJAC) = confun(mode,ncnln,n,needc,x,cjac,nstate)

objfun function
objfun must calculate either the ith element of the vector f (x) = (f1 (x)f2 (x) . . . fm (x))

T

or all m elements of f (x) and (optionally) its Jacobian (= ∂f
∂x) for a specified

n element vector x.
(MODE,F,FJAC) = objfun(mode,m,n,needfi,x,fjac,nstate)

istate integer array
Need not be set if the (default) optional argument coldstart is used.

cjac double array
In general, cjac need not be initialized before the call to e04us. However, if
derivativelevel = 3, you may optionally set the constant elements of cjac (see
argument nstate in the description of confun). Such constant elements need not
be re-assigned on subsequent calls to confun.

fjac double array
In general, fjac need not be initialized before the call to e04us. However, if
derivativelevel = 3, you may optionally set the constant elements of fjac (see
argument nstate in the description of objfun). Such constant elements need not
be re-assigned on subsequent calls to objfun.

clamda double array
Need not be set if the (default) optional argument coldstart is used.

r double array
Need not be initialized if the (default) optional argument coldstart is used.

x double array
An initial estimate of the solution.

optlist options list
Optional parameters may be listed, as shown in the following table:

Name Type Default
Central Difference Interval double Default values are computed
Cold Start Default
Warm Start
Crash Tolerance double Default = 0.01
Defaults
Derivative Level integer Default = 3
Difference Interval double Default values are computed
Feasibility Tolerance double Default =

√
ε

Function Precision double Default = ε0.9

Hessian no Default = NO
Infinite Bound Size double Default = 1020

Infinite Step Size double Default = max(bigbnd, 1020)

e04us 103

JTJ Initial Hessian Default
Unit Initial Hessian
Line Search Tolerance double Default = 0.9
Linear Feasibility Tolerance double Default =

√
ε

Nonlinear Feasibility Tolerance double Default = ε0.33 or
√
ε

List Default for e04us = list
Nolist Default for e04us = nolist
Major Iteration Limit integer Default = max(50, 3 (n+ nL) + 10nN)
Iteration Limit
Iters
Itns
Major Print Level integer
Print Level = 0
Minor Iteration Limit integer Default = max(50, 3 (n+ nL + nN))
Minor Print Level integer Default = 0
Monitoring File integer Default = −1
Optimality Tolerance double Default = ε0.8R
Reset Frequency integer Default = 2
Start Objective Check At Variable integer Default = 1
Stop Objective Check At Variable integer Default = n
Start Constraint Check At Variable integer Default = 1
Stop Constraint Check At Variable integer Default = n
Step Limit double Default = 2.0
Verify Level integer Default = 0
Verify
Verify Constraint Gradients
Verify Gradients
Verify Objective Gradients

m integer: default = nrow(y)
m, the number of subfunctions associated with F (x).

n integer: default = nrow(x)
n, the number of variables.

nclin integer: default = nrow(a)
nL, the number of general linear constraints.

ncnln integer: default = nrow(cjac)
nN , the number of nonlinear constraints.

Details

R interface to the NAG Fortran routine E04USF.

Value

ITER integer
The number of major iterations performed.

ISTATE integer array
The status of the constraints in the QP working set at the point returned in x.
The significance of each possible value of istate[j] is as follows:

104 e04us

C double array
If ncnln > 0, c[i] contains the value of the ith nonlinear constraint function ci
at the final iterate for i = 1 . . . ncnln.

CJAC double array
If ncnln > 0, cjac contains the Jacobian matrix of the nonlinear constraint
functions at the final iterate, i.e., cjac[i, j] contains the partial derivative of the
ith constraint function with respect to the jth variable for j = 1 . . . n for i =
1 . . . ncnln. (See the discussion of argument cjac under confun.)

F double array
f [i] contains the value of the ith function fi at the final iterate for i = 1 . . .m.

FJAC double array
The Jacobian matrix of the functions f1, f2, . . . , fm at the final iterate, i.e.,
fjac[i, j] contains the partial derivative of the ith function with respect to the
jth variable for j = 1 . . . n for i = 1 . . .m. (See also the discussion of argument
fjac under objfun.)

CLAMDA double array
The values of the QP multipliers from the last QP subproblem. clamda[j]
should be non-negative if istate[j] = 1 and non-positive if istate[j] = 2.

OBJF double
The value of the objective function at the final iterate.

R double array
If hessian = NO, r contains the upper triangular Cholesky factor R of QT H̃Q,
an estimate of the transformed and reordered Hessian of the Lagrangian at x
(see eqn6). If hessian = YES, r contains the upper triangular Cholesky factor
R of H , the approximate (untransformed) Hessian of the Lagrangian, with the
variables in the natural order.

X double array
The final estimate of the solution.

IFAIL integer
ifail = 0 unless the function detects an error or a warning has been flagged (see
the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04usf.pdf

Examples

optlist <- list()

ifail <- 0
confun = function(mode, ncnln, n, needc, x, cjac,

nstate) {
ldcj <- nrow(cjac)

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04usf.pdf

e04us 105

c <- as.matrix(mat.or.vec(ncnln, 1))

if (nstate == 1) {

cjac <- as.matrix(mat.or.vec(ncnln, n))

}

if (needc[1] > 0) {

if (mode == 0 || mode == 2) {

c[1] <- -0.09 - x[1] %*% x[2] + 0.49 %*% x[2]

}
if (mode == 1 || mode == 2) {

cjac[1, 1] <- -x[2]

cjac[1, 2] <- -x[1] + 0.49

}
}
list(MODE = as.integer(mode), C = as.matrix(c), CJAC = as.matrix(cjac))

}
objfun = function(mode, m, n, needfi, x, fjac, nstate) {

ldfj <- nrow(fjac)

f <- as.matrix(mat.or.vec(m, 1))
a <- matrix(c(8, 8, 10, 10, 10, 10, 12, 12, 12, 12, 14, 14,

14, 16, 16, 16, 18, 18, 20, 20, 20, 22, 22, 22, 24, 24,
24, 26, 26, 26, 28, 28, 30, 30, 30, 32, 32, 34, 36, 36,
38, 38, 40, 42), nrow = 1, ncol = 44, byrow = TRUE)

for (i in c(1:m)) {
temp <- exp(-x[2] %*% (a[i] - 8))

if (mode == 0 || mode == 2) {

f[i] <- x[1] + (0.49 - x[1]) %*% temp

}
if (mode == 1 || mode == 2) {

fjac[i, 1] <- 1 - temp

fjac[i, 2] <- -(0.49 - x[1]) %*% (a[i] - 8) %*% temp

}
}
list(MODE = as.integer(mode), F = as.matrix(f), FJAC = as.matrix(fjac))

}

a <- matrix(c(1, 1), nrow = 1, ncol = 2, byrow = TRUE)

bl <- matrix(c(0.4, -4, 1, 0), nrow = 4, ncol = 1,

106 e04vj

byrow = TRUE)

bu <- matrix(c(1e+25, 1e+25, 1e+25, 1e+25), nrow = 4,
ncol = 1, byrow = TRUE)

y <- matrix(c(0.49, 0.49, 0.48, 0.47, 0.48, 0.47,
0.46, 0.46, 0.45, 0.43, 0.45, 0.43, 0.43, 0.44, 0.43, 0.43,
0.46, 0.45, 0.42, 0.42, 0.43, 0.41, 0.41, 0.4, 0.42, 0.4,
0.4, 0.41, 0.4, 0.41, 0.41, 0.4, 0.4, 0.4, 0.38, 0.41, 0.4,
0.4, 0.41, 0.38, 0.4, 0.4, 0.39, 0.39), nrow = 44, ncol = 1,
byrow = TRUE)

istate <- as.matrix(mat.or.vec(4, 1))

cjac <- matrix(c(0, 0), nrow = 1, ncol = 2, byrow = TRUE)

fjac <- matrix(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0), nrow = 44, ncol = 2, byrow = TRUE)

clamda <- as.matrix(mat.or.vec(4, 1))

r <- matrix(c(0, 0, 0, 0), nrow = 2, ncol = 2, byrow = TRUE)

x <- matrix(c(0.4, 0), nrow = 2, ncol = 1, byrow = TRUE)

e04us(a, bl, bu, y, confun, objfun, istate, cjac,
fjac, clamda, r, x, optlist)

e04vj e04vj: Determine the pattern of nonzeros in the Jacobian matrix for
e04vh

Description

e04vj may be used before e04vh to determine the sparsity pattern for the Jacobian.

e04vj 107

Usage

e04vj(nf, usrfun, lena, leng, x, xlow, xupp,
n = nrow(x))

Arguments

nf integer
nf , the number of problem functions in F (x), including the objective func-
tion (if any) and the linear and nonlinear constraints. Simple upper and lower
bounds on x can be defined using the arguments xlow and xupp and should not
be included in F .

usrfun function
usrfun must define the problem functions F (x). This function is passed to e04vj
as the external argument usrfun.
(STATUS,F,G) = usrfun(status,n,x,needf,nf,f,needg,leng,g)

lena integer
Lena should be an overestimate of the number of elements in the linear part of
the Jacobian.

leng integer
Leng should be an overestimate of the number of elements in the nonlinear part
of the Jacobian.

x double array
An initial estimate of the variables x. The contents of x will be used by e04vj in
the call of usrfun, and so each element of x should be within the bounds given
by xlow xupp.

xlow double array

xupp double array
Contain the lower and upper bounds lx and ux on the variables x.

n integer: default = nrow(x)
n, the number of variables.

Details

R interface to the NAG Fortran routine E04VJF.

Value

IAFUN integer array

JAVAR integer array

NEA integer
Is the number of nonzero entries in A such that F (x) = f (x) +Ax.

A double array
Define the coordinates (ij) and values Aij of the nonzero elements of the linear
part A of the function F (x) = f (x) +Ax.

IGFUN integer array

108 e04vj

JGVAR integer array
Define the coordinates (ij) of the nonzero elements of G, the nonlinear part of
the derivatives J (x) = G (x) +A of the function F (x) = f (x) +Ax.

NEG integer
The number of nonzero entries in G.

IFAIL integer
ifail = 0 unless the function detects an error or a warning has been flagged (see
the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04vjf.pdf

Examples

optlist <- list()

ifail <- 0
usrfun = function(status, n, x, needf, nf, f, needg,

leng, g) {

f[1] <- 1000 %*% sin(-x[1] - 0.25) + 1000 %*% sin(-x[2] -
0.25) - x[3]

f[2] <- 1000 %*% sin(x[1] - 0.25) + 1000 %*% sin(x[1] - x[2] -
0.25) - x[4]

f[3] <- 1000 %*% sin(x[2] - x[1] - 0.25) + 1000 %*% sin(x[2] -
0.25)

f[4] <- -x[1] + x[2]
f[5] <- x[1] - x[2]
f[6] <- 1e-06 %*% x[3]^3 + 2e-06 %*% x[4]^3/3 + 3 %*% x[3] +

2 %*% x[4]
list(STATUS = as.integer(status), F = as.matrix(f), G = as.matrix(g))

}

nf <- 6

lena <- 300

leng <- 300

x <- matrix(c(0, 0, 0, 0), nrow = 4, ncol = 1, byrow = TRUE)

xlow <- matrix(c(-0.55, -0.55, 0, 0), nrow = 4, ncol = 1,
byrow = TRUE)

xupp <- matrix(c(0.55, 0.55, 1200, 1200), nrow = 4,

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04vjf.pdf

e04wd 109

ncol = 1, byrow = TRUE)

e04vj(nf, usrfun, lena, leng, x, xlow, xupp)

e04wd e04wd: Solves the nonlinear programming (NP) problem

Description

e04wd is designed to minimize an arbitrary smooth function subject to constraints (which may
include simple bounds on the variables, linear constraints and smooth nonlinear constraints) using
a sequential quadratic programming (SQP) method. As many first derivatives as possible should
be supplied by you; any unspecified derivatives are approximated by finite differences. It is not
intended for large sparse problems.

e04wd may also be used for unconstrained, bound-constrained and linearly constrained optimiza-
tion.

e04wd uses forward communication for evaluating the objective function, the nonlinear constraint
functions, and any of their derivatives.

The initialization function e04wc must have been called before to calling e04wd.

Usage

e04wd(a, bl, bu, confun, objfun, istate, ccon, cjac, clamda, h, x, optlist,
n = nrow(x),
nclin = nrow(a),
ncnln = nrow(cjac))

Arguments

a double array
The ith row of a contains the ith row of the matrix AL of general linear con-
straints in eqn1. That is, the ith row contains the coefficients of the ith general
linear constraint for i = 1 . . . nclin.

bl double array

bu double array
Bl must contain the lower bounds and bu the upper bounds for all the constraints,
in the following order. The first n elements of each array must contain the
bounds on the variables, the next nL elements the bounds for the general linear
constraints (if any) and the next nN elements the bounds for the general nonlin-
ear constraints (if any). To specify a nonexistent lower bound (i.e., lj = −∞),
set bl[j] ≤ −bigbnd, and to specify a nonexistent upper bound (i.e., uj = +∞),
set bu[j] ≥ bigbnd; where bigbnd is the optional argument infiniteboundsize.
To specify the jth constraint as an equality, set bl[j] = bu[j] = β, say, where
abs(β) < bigbnd.

110 e04wd

confun function
confun must calculate the vector c (x) of nonlinear constraint functions and (op-
tionally) its Jacobian, ∂c

∂x , for a specified n-vector x. If there are no nonlinear
constraints (i.e., ncnln = 0), e04wd will never call confun, so it may be the
dummy function e04wdp. (e04wdp is included in the NAG Library). If there
are nonlinear constraints, the first call to confun will occur before the first call
to objfun.
(MODE,CCON,CJAC) = confun(mode,ncnln,n,needc,x,cjac,nstate)

objfun function
objfun must calculate the objective function F (x) and (optionally) its gradient
g (x) = ∂F

∂x for a specified n-vector x.
(MODE,OBJF,GRAD) = objfun(mode,n,x,grad,nstate)

istate integer array
Is an integer array that need not be initialized if e04wd is called with the coldstart
option (the default).

ccon double array
Ccon need not be initialized if the (default) optional argument coldstart is used.

cjac double array
In general, cjac need not be initialized before the call to e04wd. However, if
derivativelevel = 2, 3, any constant elements of cjac may be initialized. Such
elements need not be reassigned on subsequent calls to confun.

clamda double array
Need not be set if the (default) optional argument coldstart is used.

h double array
H need not be initialized if the (default) optional argument coldstart is used, and
will be set to the identity.

x double array
An initial estimate of the solution.

optlist options list
Optional parameters may be listed, as shown in the following table:

Name Type Default
Central Difference Interval double Default = ε

1
3
r

Check Frequency integer Default = 60
Cold Start Default
Warm Start
Crash Option integer Default = 3
Crash Tolerance double Default = 0.1
Defaults
Derivative Level integer Default = 3
Derivative Linesearch Default
Nonderivative Linesearch
Difference Interval double Default =

√
εr

Dump File integer Default = 0
Load File integer Default = 0
Elastic Weight double Default = 104

Expand Frequency integer Default = 10000

e04wd 111

Factorization Frequency integer Default = 50
Function Precision double Default = ε0.8

Hessian Full Memory Default if n ≤ 75
Hessian Limited Memory Default if n > 75
Hessian Frequency integer Default = 99999999
Hessian Updates integer Default = hessianfrequency if hessianfullmemory, 10 otherwise
Infinite Bound Size double Default = 1020

Iterations Limit integer Default = max (1000010max (nnL + nN))
Linesearch Tolerance double Default = 0.9
Nolist Default
List
LU Density Tolerance double Default = 0.6

LU Singularity Tolerance double Default = ε
2
3

LU Factor Tolerance double Default = 1.10
LU Update Tolerance double Default = 1.10
LU Partial Pivoting Default
LU Complete Pivoting
LU Rook Pivoting
Major Feasibility Tolerance double Default = max

(
10−6

√
ε
)

Major Optimality Tolerance double Default = 2max
(
10−6

√
ε
)

Major Iterations Limit integer Default = max (10003max (nnL + nN))
Major Print Level integer Default = 000001
Major Step Limit double Default = 2.0
Minimize Default
Maximize
Feasible Point
Minor Feasibility Tolerance
Feasibility Tolerance double Default = max

{
10−6

√
ε
}

Minor Iterations Limit integer Default = 500
Minor Print Level integer Default = 1
New Basis File integer Default = 0
Backup Basis File integer Default = 0
Save Frequency integer Default = 100
New Superbasics Limit integer Default = 99
Old Basis File integer Default = 0
Partial Price integer Default = 1

Pivot Tolerance double Default = ε
2
3

Print File integer Default = 0
Print Frequency integer Default = 100
Proximal Point Method integer Default = 1
Punch File integer Default = 0
Insert File integer Default = 0
QPSolver Cholesky Default
QPSolver CG
QPSolver QN
Reduced Hessian Dimension integer Default = min (2000n)
Scale Option integer Default = 0
Scale Tolerance double Default = 0.9
Scale Print
Solution File integer Default = 0
Start Objective Check At Variable integer Default = 1
Stop Objective Check At Variable integer Default = n

112 e04wd

Start Constraint Check At Variable integer Default = 1
Stop Constraint Check At Variable integer Default = n
Summary File integer Default = 0
Summary Frequency integer Default = 100
Superbasics Limit integer Default = n
Suppress Parameters
System Information No Default
System Information Yes
Timing Level integer Default = 0
Unbounded Objective double Default = 1.0E + 15
Unbounded Step Size double Default = bigbnd
Verify Level integer Default = 0
Violation Limit double Default = 1.0E + 6

n integer: default = nrow(x)
n, the number of variables.

nclin integer: default = nrow(a)
nL, the number of general linear constraints.

ncnln integer: default = nrow(cjac)
nN , the number of nonlinear constraints.

Details

R interface to the NAG Fortran routine E04WDF.

Value

MAJITS integer
The number of major iterations performed.

ISTATE integer array
Describes the status of the constraints l ≤ r (x) ≤ u. For the jth lower or upper
bound, j = 1, 2, . . . , n+ nclin+ ncnln, the possible values of istate[j] are as
follows (see the figure in the Fortran library documentation). δ is the appropriate
feasibility tolerance.

CCON double array
If ncnln > 0, ccon[i] contains the value of the ith nonlinear constraint function
ci at the final iterate for i = 1 . . . ncnln.

CJAC double array
If ncnln > 0, cjac contains the Jacobian matrix of the nonlinear constraint
functions at the final iterate, i.e., cjac[i, j] contains the partial derivative of the
ith constraint function with respect to the jth variable for j = 1 . . . n for i =
1 . . . ncnln. (See the discussion of argument cjac under confun.)

CLAMDA double array
The values of the QP multipliers from the last QP subproblem. clamda[j]
should be non-negative if istate[j] = 1 and non-positive if istate[j] = 2.

OBJF double
The value of the objective function at the final iterate.

e04wd 113

GRAD double array
The gradient of the objective function (or its finite difference approximation) at
the final iterate.

H double array
Contains the Hessian of the Lagrangian at the final estimate x.

X double array
The final estimate of the solution.

IFAIL integer
ifail = 0 unless the function detects an error or a warning has been flagged (see
the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04wdf.pdf

Examples

optlist <- list()

ifail <- 0
confun = function(mode, ncnln, n, needc, x, cjac,

nstate) {
ldcj <- nrow(cjac)

ccon <- as.matrix(mat.or.vec(ncnln, 1))

if (nstate == 1) {

cjac <- as.matrix(mat.or.vec(ncnln, n))

}

if (needc[1] > 0) {

if (mode == 0 || mode == 2) {

ccon[1] <- x[1]^2 + x[2]^2 + x[3]^2 + x[4]^2

}
if (mode == 1 || mode == 2) {

cjac[1, 1] <- 2 %*% x[1]

cjac[1, 2] <- 2 %*% x[2]

cjac[1, 3] <- 2 %*% x[3]

cjac[1, 4] <- 2 %*% x[4]

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04wdf.pdf

114 e04wd

}
}

if (needc[2] > 0) {

if (mode == 0 || mode == 2) {

ccon[2] <- x[1] %*% x[2] %*% x[3] %*% x[4]

}
if (mode == 1 || mode == 2) {

cjac[2, 1] <- x[2] %*% x[3] %*% x[4]

cjac[2, 2] <- x[1] %*% x[3] %*% x[4]

cjac[2, 3] <- x[1] %*% x[2] %*% x[4]

cjac[2, 4] <- x[1] %*% x[2] %*% x[3]

}
}
list(MODE = as.integer(mode), CCON = as.matrix(ccon), CJAC = as.matrix(cjac))

}
objfun = function(mode, n, x, grad, nstate) {

if (mode == 0 || mode == 2) {

objf <- x[1] %*% x[4] %*% (x[1] + x[2] + x[3]) + x[3]

}

if (mode == 1 || mode == 2) {

grad[1] <- x[4] %*% (2 %*% x[1] + x[2] + x[3])

grad[2] <- x[1] %*% x[4]

grad[3] <- x[1] %*% x[4] + 1

grad[4] <- x[1] %*% (x[1] + x[2] + x[3])

}
list(MODE = as.integer(mode), OBJF = objf, GRAD = as.matrix(grad))

}

a <- matrix(c(1, 1, 1, 1), nrow = 1, ncol = 4, byrow = TRUE)

bl <- matrix(c(1, 1, 1, 1, -1e+25, -1e+25, 25), nrow = 7,
ncol = 1, byrow = TRUE)

bu <- matrix(c(5, 5, 5, 5, 20, 40, 1e+25), nrow = 7,

e04xa 115

ncol = 1, byrow = TRUE)

istate <- as.matrix(mat.or.vec(7, 1))

ccon <- as.matrix(mat.or.vec(2, 1))

cjac <- as.matrix(mat.or.vec(2, 4))

clamda <- as.matrix(mat.or.vec(7, 1))

h <- as.matrix(mat.or.vec(4, 4))

x <- matrix(c(1, 5, 5, 1), nrow = 4, ncol = 1, byrow = TRUE)

e04wd(a, bl, bu, confun, objfun, istate, ccon, cjac,
clamda, h, x, optlist)

e04xa e04xa: Estimate (using numerical differentiation) gradient and/or
Hessian of a function

Description

e04xa computes an approximation to the gradient vector and/or the Hessian matrix for use in con-
junction with, or following the use of an optimization function (such as e04uf).

Usage

e04xa(msglvl, epsrf, x, mode, objfun, hforw, lwsav, iwsav, rwsav,
n = nrow(x))

Arguments

msglvl integer
Must indicate the amount of intermediate output desired (see the printed output
description in the Fortran library documentation for a description of the printed
output). All output is written on the current advisory message unit (see x04ab).

epsrf double
Must define eR, which is intended to be a measure of the accuracy with which
the problem function F can be computed. The value of eR should reflect the
relative precision of 1+abs(F (x)), i.e., acts as a relative precision when abs(F)
is large, and as an absolute precision when abs(F) is small. For example, if
F (x) is typically of order 1000 and the first six significant digits are known to
be correct, an appropriate value for eR would be 1.0E − 6.

x double array
The point x at which the derivatives are to be computed.

116 e04xa

mode integer
Indicates which derivatives are required.
mode = 0: The gradient and Hessian diagonal values having supplied the ob-
jective function via objfun.
mode = 1: The Hessian matrix having supplied both the objective function and
gradients via objfun.
mode = 2: The gradient values and Hessian matrix having supplied the objec-
tive function via objfun.

objfun function
If mode = 0, 2, objfun must calculate the objective function; otherwise if
mode = 1, objfun must calculate the objective function and the gradients.
(MODE,OBJF,OBJGRD) = objfun(mode,n,x,nstate)

hforw double array
The initial trial interval for computing the appropriate partial derivative to the
jth variable.

lwsav boolean array

iwsav integer array

rwsav double array
These arguments are no longer required by e04xa.

n integer: default = nrow(x)
The number n of independent variables.

Details

R interface to the NAG Fortran routine E04XAF.

Value

MODE integer
Is changed only if you set mode negative in objfun, i.e., you have requested
termination of e04xa.

HFORW double array
hforw[j] is the best interval found for computing a forward-difference approx-
imation to the appropriate partial derivative for the jth variable.

OBJF double
The value of the objective function evaluated at the input vector in x.

OBJGRD double array
Ifmode = 0, 2, objgrd[j] contains the best estimate of the first partial derivative
for the jth variable.

HCNTRL double array
hcntrl[j] is the best interval found for computing a central-difference approxi-
mation to the appropriate partial derivative for the jth variable.

H double array
If mode = 0, the estimated Hessian diagonal elements are contained in the first
column of this array.

IWARN integer
iwarn = 0 on successful exit.

e04xa 117

INFO integer array
info[j] represents diagnostic information on variable j. (See the Errors section
in Fortran library documentation for more details.)

IFAIL integer
ifail = 0 unless the function detects an error or a warning has been flagged (see
the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04xaf.pdf

Examples

optlist <- list()

ifail <- 0
objfun = function(mode, n, x, nstate) {

objgrd <- as.matrix(mat.or.vec(n, 1))
a <- x[1] + 10 %*% x[2]
b <- x[3] - x[4]
c <- x[2] - 2 %*% x[3]
d <- x[1] - x[4]
objf <- a^2 + 5 %*% b^2 + c^4 + 10 %*% d^4

if (mode == 1) {

objgrd[1] <- 40 %*% x[1]^3 + 2 %*% x[1] - 120 %*% x[4] %*%
x[1]^2 + 120 %*% x[1] %*% x[4]^2 + 20 %*% x[2] -
40 %*% x[4]^3

objgrd[2] <- 200 %*% x[2] + 20 %*% x[1] + 4 %*% x[2]^3 +
48 %*% x[2] %*% x[3]^2 - 24 %*% x[3] %*% x[2]^2 -
32 %*% x[3]^3

objgrd[3] <- 10 %*% x[3] - 10 %*% x[4] - 8 %*% x[2]^3 +
48 %*% x[3] %*% x[2]^2 - 96 %*% x[2] %*% x[3]^2 +
64 %*% x[3]^3

objgrd[4] <- 10 %*% x[4] - 10 %*% x[3] - 40 %*% x[1]^3 +
120 %*% x[4] %*% x[1]^2 - 120 %*% x[1] %*% x[4]^2 +
40 %*% x[4]^3

}
list(MODE = as.integer(mode), OBJF = objf, OBJGRD = as.matrix(objgrd))

}

msglvl <- 0

epsrf <- -1

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04xaf.pdf

118 e04ya

x <- matrix(c(3, -1, 0, 1), nrow = 4, ncol = 1, byrow = TRUE)

mode <- 0

hforw <- matrix(c(-1, -1, -1, -1), nrow = 4, ncol = 1,
byrow = TRUE)

lwsav <- as.matrix(mat.or.vec(120, 1))

iwsav <- as.matrix(mat.or.vec(610, 1))

rwsav <- as.matrix(mat.or.vec(475, 1))

e04xa(msglvl, epsrf, x, mode, objfun, hforw, lwsav,
iwsav, rwsav)

e04ya e04ya: Check user’s function for calculating Jacobian of first deriva-
tives

Description

e04ya checks that a user-supplied function for evaluating a vector of functions and the matrix of their
first derivatives produces derivative values which are consistent with the function values calculated.

Usage

e04ya(m, lsqfun, x,
n = nrow(x))

Arguments

m integer
lsqfun function

lsqfun must calculate the vector of values fi (x) and their first derivatives ∂fi
∂xj

at any point x. (The minimization functions mentioned in the Description in
Fortran library documentation give you the option of resetting a argument to
terminate immediately. e04ya will also terminate immediately, without finishing
the checking process, if the argument in question is reset.)
(IFLAG,FVEC,FJAC) = lsqfun(iflag,m,n,xc,ldfjac)

x double array
x[j] for j = 1 . . . n, must be set to the coordinates of a suitable point at which
to check the derivatives calculated by lsqfun. ‘Obvious’ settings, such as 0 or
1, should not be used since, at such particular points, incorrect terms may take
correct values (particularly zero), so that errors can go undetected. For a similar
reason, it is preferable that no two elements of x should have the same value.

n integer: default = nrow(x)
The number m of residuals, fi (x), and the number n of variables, xj .

e04ya 119

Details

R interface to the NAG Fortran routine E04YAF.

Value

FVEC double array
Unless you set iflag negative in the first call of lsqfun, fvec[i] contains the value
of fi at the point supplied by you in x for i = 1 . . .m.

FJAC double array
Unless you set iflag negative in the first call of lsqfun, fjac[i, j] contains the
value of the first derivative ∂fi

∂xj
at the point given in x, as calculated by lsqfun

for j = 1 . . . n for i = 1 . . .m.

IFAIL integer
ifail = 0 unless the function detects an error or a warning has been flagged (see
the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04yaf.pdf

Examples

ifail <- 0
lsqfun = function(iflag, m, n, xc, ljc) {

fvec <- as.matrix(mat.or.vec(m, 1))
fjacc <- as.matrix(mat.or.vec(ljc, n))
for (i in c(1:m)) {

denom <- xc[2] %*% t[i, 2] + xc[3] %*% t[i, 3]

if (iflag != 1) {

fvec[i] <- xc[1] + t[i, 1]/denom - y[i]

}
if (iflag != 0) {

fjacc[i, 1] <- 1

dummy <- -1/(denom %*% denom)

fjacc[i, 2] <- t[i, 1] %*% t[i, 2] %*% dummy

fjacc[i, 3] <- t[i, 1] %*% t[i, 3] %*% dummy

}
}
list(IFLAG = as.integer(iflag), FVEC = as.matrix(fvec), FJAC = as.matrix(fjacc))

}

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04yaf.pdf

120 e04yb

m <- 15

x <- matrix(c(0.19, -1.34, 0.88), nrow = 3, ncol = 1,
byrow = TRUE)

iw <- as.matrix(mat.or.vec(0, 0))

w <- as.matrix(mat.or.vec(69, 1))

y <- matrix(c(0.14, 0.18, 0.22, 0.25, 0.29, 0.32,
0.35, 0.39, 0.37, 0.58, 0.73, 0.96, 1.34, 2.1, 4.39), nrow = 1,
ncol = 15, byrow = TRUE)

t <- matrix(c(1, 15, 1, 2, 14, 2, 3, 13, 3, 4, 12,
4, 5, 11, 5, 6, 10, 6, 7, 9, 7, 8, 8, 8, 9, 7, 7, 10, 6,
6, 11, 5, 5, 12, 4, 4, 13, 3, 3, 14, 2, 2, 15, 1, 1), nrow = 15,
ncol = 3, byrow = TRUE)

e04ya(m, lsqfun, x)

e04yb e04yb: Check user’s function for calculating Hessian of a sum of
squares

Description

e04yb checks that a user-supplied function for evaluating the second derivative term of the Hessian
matrix of a sum of squares is consistent with a user-supplied function for calculating the corre-
sponding first derivatives.

Usage

e04yb(m, lsqfun, lsqhes, x, lb, iw, w,
n = nrow(x))

Arguments

m integer

lsqfun function
lsqfun must calculate the vector of values fi (x) and their first derivatives ∂fi

∂xj

at any point x. (e04he gives you the option of resetting arguments of lsqfun
to cause the minimization process to terminate immediately. e04yb will also
terminate immediately, without finishing the checking process, if the argument
in question is reset.)
(IFLAG,FVEC,FJAC) = lsqfun(iflag,m,n,xc,ldfjac)

e04yb 121

lsqhes function
lsqhes must calculate the elements of the symmetric matrix

B (x) =

m∑
i=1

fi (x)Gi (x) ,

at any point x, where Gi (x) is the Hessian matrix of fi (x). (As with lsqfun, a
argument can be set to cause immediate termination.)
(IFLAG,B) = lsqhes(iflag,m,n,fvec,xc,lb)

x double array
x[j] for j = 1 . . . n, must be set to the coordinates of a suitable point at which to
check the bjk calculated by lsqhes. ‘Obvious’ settings, such as 0 or 1, should not
be used since, at such particular points, incorrect terms may take correct values
(particularly zero), so that errors could go undetected. For a similar reason, it is
preferable that no two elements of x should have the same value.

lb integer

iw integer array
This array appears in the argument list purely so that, if e04yb is called by
another library function, the library function can pass quantities to functions
lsqfun and lsqhes via iw. iw is not examined or changed by e04yb. In general
you must provide an array iw, but are advised not to use it. integer array
This array appears in the argument list purely so that, if e04yb is called by
another library function, the library function can pass quantities to functions
lsqfun and lsqhes via iw. iw is not examined or changed by e04yb. In general
you must provide an array iw, but are advised not to use it.

w double array
The actual length of w as declared in the function from which e04yb is called.
double array
The actual length of w as declared in the function from which e04yb is called.

n integer: default = nrow(x)
The number m of residuals, fi (x), and the number n of variables, xj .

Details

R interface to the NAG Fortran routine E04YBF.

Value

FVEC double array
Unless you set iflag negative in the first call of lsqfun, fvec[i] contains the value
of fi at the point supplied by you in x for i = 1 . . .m.

FJAC double array
Unless you set iflag negative in the first call of lsqfun, fjac[i, j] contains the
value of the first derivative ∂fi

∂xj
at the point given in x, as calculated by lsqfun

for j = 1 . . . n for i = 1 . . .m.

B double array
Unless you set iflag negative in lsqhes, b[j×(j − 1) /2+k] contains the value of
bjk at the point given in x as calculated by lsqhes for k = 1 . . . j for j = 1 . . . n.

122 e04yb

IW integer array
This array appears in the argument list purely so that, if e04yb is called by
another library function, the library function can pass quantities to functions
lsqfun and lsqhes via iw. iw is not examined or changed by e04yb. In general
you must provide an array iw, but are advised not to use it.

integer array

This array appears in the argument list purely so that, if e04yb is called by another library function,
the library function can pass quantities to functions lsqfun and lsqhes via iw. iw is not examined or
changed by e04yb. In general you must provide an array iw, but are advised not to use it.

W double array

double array

IFAIL integer
ifail = 0 unless the function detects an error or a warning has been flagged (see
the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04ybf.pdf

Examples

ifail <- 0
lsqfun = function(iflag, m, n, xc, ljc) {

fvec <- as.matrix(mat.or.vec(m, 1))
fjacc <- as.matrix(mat.or.vec(ljc, n))
for (i in c(1:m)) {

denom <- xc[2] %*% t[i, 2] + xc[3] %*% t[i, 3]

fvec[i] <- xc[1] + t[i, 1]/denom - y[i]

if (iflag != 0) {

fjacc[i, 1] <- 1

dummy <- -1/(denom %*% denom)

fjacc[i, 2] <- t[i, 1] %*% t[i, 2] %*% dummy

fjacc[i, 3] <- t[i, 1] %*% t[i, 3] %*% dummy

}
}
list(IFLAG = as.integer(iflag), FVEC = as.matrix(fvec), FJAC = as.matrix(fjacc))

}
lsqhes = function(iflag, m, n, fvec, xc, lb) {

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04ybf.pdf

e04yc 123

b <- as.matrix(mat.or.vec(lb, 1))
sum22 <- 0
sum32 <- 0
sum33 <- 0
for (i in c(1:m)) {

dummy <- 2 %*% t[i, 1]/(xc[2] %*% t[i, 2] + xc[3] %*%
t[i, 3])^3

sum22 <- sum22 + fvec[i] %*% dummy %*% t[i, 2]^2

sum32 <- sum32 + fvec[i] %*% dummy %*% t[i, 2] %*% t[i,
3]

sum33 <- sum33 + fvec[i] %*% dummy %*% t[i, 3]^2
}
b[3] <- sum22
b[5] <- sum32
b[6] <- sum33
list(IFLAG = as.integer(iflag), B = as.matrix(b))

}

m <- 15

x <- matrix(c(0.19, -1.34, 0.88), nrow = 3, ncol = 1,
byrow = TRUE)

lb <- 6

iw <- as.matrix(mat.or.vec(1, 1))

w <- as.matrix(mat.or.vec(78, 1))

y <- matrix(c(0.14, 0.18, 0.22, 0.25, 0.29, 0.32,
0.35, 0.39, 0.37, 0.58, 0.73, 0.96, 1.34, 2.1, 4.39), nrow = 1,
ncol = 15, byrow = TRUE)

t <- matrix(c(1, 15, 1, 2, 14, 2, 3, 13, 3, 4, 12,
4, 5, 11, 5, 6, 10, 6, 7, 9, 7, 8, 8, 8, 9, 7, 7, 10, 6,
6, 11, 5, 5, 12, 4, 4, 13, 3, 3, 14, 2, 2, 15, 1, 1), nrow = 15,
ncol = 3, byrow = TRUE)

e04yb(m, lsqfun, lsqhes, x, lb, iw, w)

e04yc e04yc: Covariance matrix for nonlinear least squares problem (un-
constrained)

124 e04yc

Description

e04yc returns estimates of elements of the variance-covariance matrix of the estimated regression
coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of
the function f (x) at the solution.

This function may be used following any one of the nonlinear least squares functions e04fc e04fy
e04gb e04gy e04gd e04gz e04he e04hy.

Usage

e04yc(job, m, fsumsq, s, v,
n = nrow(s))

Arguments

job integer
Which elements of C are returned as follows:
job = −1: The n by n symmetric matrix C is returned.
job = 0: The diagonal elements of C are returned.
job > 0: The elements of column job of C are returned.

m integer
The number m of observations (residuals fi (x)).

fsumsq double
The sum of squares of the residuals, F (x̄), at the solution x̄, as returned by the
nonlinear least squares function.

s double array
The n singular values of the Jacobian as returned by the nonlinear least squares
function. See the Description in Fortran library documentation for information
on supplying s following one of the easy-to-use functions.

v double array
The n by n right-hand orthogonal matrix (the right singular vectors) of J as
returned by the nonlinear least squares function. See the Description in Fortran
library documentation for information on supplying v following one of the easy-
to-use functions.

n integer: default = nrow(s)
The number n of variables (xj).

Details

R interface to the NAG Fortran routine E04YCF.

Value

V double array
If job ≥ 0, v is unchanged.

CJ double array
If job = 0, cj returns the n diagonal elements of C.

IFAIL integer
ifail = 0 unless the function detects an error or a warning has been flagged (see
the Errors section in Fortran library documentation).

e05jb 125

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04ycf.pdf

Examples

ifail <- 0

job <- 0

m <- 15

fsumsq <- 0.00821487730657898

s <- matrix(c(4.096503460741, 1.59495793805472, 0.0612584931217495),
nrow = 3, ncol = 1, byrow = TRUE)

v <- matrix(c(0.935395908691802, 0.352951220949886,
-0.0214459700788422, -0.259228425671719, 0.643234592093676,
-0.72045116618536, -0.240489328924174, 0.679466478322564,
0.693173995119214), nrow = 3, ncol = 3, byrow = TRUE)

e04yc(job, m, fsumsq, s, v)

e05jb e05jb: Global optimization by multi-level coordinate search, simple
bounds, using function values only

Description

e05jb is designed to find the global minimum or maximum of an arbitrary function, subject to simple
bound-constraints using a multi-level coordinate search method. Derivatives are not required, but
convergence is only guaranteed if the objective function is continuous in a neighbourhood of a
global optimum. It is not intended for large problems.

The initialization function e05ja must have been called before calling e05jb.

Usage

e05jb(objfun, ibound, iinit, bl, bu, list, numpts, initpt, monit, optlist,
n = nrow(bl),
sdlist = ncol(list))

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E04/e04ycf.pdf

126 e05jb

Arguments

objfun function
objfun must evaluate the objective function F (x) for a specified n-vector x.
(F,INFORM) = objfun(n,x,nstate)

ibound integer
Indicates whether the facility for dealing with bounds of special forms is to be
used. ibound must be set to one of the following values.
ibound = 0: You will supply ` and u individually.
ibound = 1: There are no bounds on x.
ibound = 2: There are semi-infinite bounds 0 ≤ x.
ibound = 3: There are constant bounds ` = `1 and u = u1.

iinit integer
Selects which initialization method to use.
iinit = 0: Simple initialization (boundary and midpoint), with numpts[i] = 3,
initpt[i] = 2 and list[i, j] = (bl[i](bl[i] + bu[i]) /2bu[i]), for i = 1, 2, . . . , n
and j = 1, 2, 3.
iinit = 1: Simple initialization (off-boundary and midpoint), with numpts[i] =
3, initpt[i] = 2 and list[i, j] = ((5bl[i] + bu[i]) /6(bl[i] + bu[i]) /2(bl[i] + 5bu[i]) /6),
for i = 1, 2, . . . , n and j = 1, 2, 3.
iinit = 2: Initialization using linesearches.
iinit = 3: You are providing your own initialization list.
iinit = 4: Generate a random initialization list.

bl double array

bu double array
bl is `, the array of lower bounds. bu is u, the array of upper bounds.

list double array
This argument need not be set on entry if you wish to use one of the preset
initialization methods (iinit 6= 3).

numpts integer array
This argument need not be set on entry if you wish to use one of the preset
initialization methods (iinit 6= 3).

initpt integer array
This argument need not be set on entry if you wish to use one of the preset
initialization methods (iinit 6= 3).

monit function
monit may be used to monitor the optimization process. It is invoked upon every
successful completion of the procedure in which a sub-box is considered for
splitting. It will also be called just before e05jb exits if that splitting procedure
was not successful.
(INFORM) = monit(n,ncall,xbest,icount,ninit,list,numpts,initpt,nbaskt,xbaskt,boxl,boxu,nstate)

optlist options list
Optional parameters may be listed, as shown in the following table:

Name Type Default
Defaults

e05jb 127

Function Evaluations Limit integer Default = 100n2r

Infinite Bound Size double Default = r
1
4
max

Local Searches string Default = ‘ON′

Local Searches Limit integer Default = 50
Local Searches Tolerance double Default = 2ε
Minimize Default
Maximize
Nolist Default
List
Repeatability string Default = ‘OFF′

Splits Limit integer Default = bd (nr + 2) /3c
Static Limit integer Default = 3nr
Target Objective Error double Default = ε

1
4

Target Objective Safeguard double Default = ε
1
2

Target Objective Value double

n integer: default = nrow(bl)
n, the number of variables.

sdlist integer: default = ncol(list)
. sdlist is, at least, the maximum over i of the number of points in coordi-
nate i at which to split according to the initialization list list; that is, sdlist ≥
maxinumpts[i].

Details

R interface to the NAG Fortran routine E05JBF.

Value

BL double array

BU double array
Unless ifail = 1, ifail = 2 on exit, bl and bu are the actual arrays of bounds used
by e05jb.

LIST double array
Unless ifail = 1, ifail = 2, ifail = −999 on exit, the actual initialization data
used by e05jb. If you wish to monitor the contents of list you are advised to do
so solely through monit, not through the output value here.

NUMPTS integer array
Unless ifail = 1, ifail = 2, ifail = −999 on exit, the actual initialization data
used by e05jb.

INITPT integer array
Unless ifail = 1, ifail = 2, ifail = −999 on exit, the actual initialization data
used by e05jb.

X double array
If ifail = 0, contains an estimate of the global optimum (see also the Accuracy
section in the Fortran library documentation).

OBJ double
If ifail = 0, contains the function value at x.

128 e05jb

IFAIL integer
ifail = 0 unless the function detects an error or a warning has been flagged (see
the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E05/e05jbf.pdf

Examples

optlist <- list()

ifail <- 0
peaks <- function(x1, x2) {

f = 3 * (1 - x1)^2 * exp(-(x1^2) - (x2 + 1)^2) - 10 * (x1/5 -
x1^3 - x2^5) * exp(-x1^2 - x2^2) - 1/3 * exp(-(x1 + 1)^2 -
x2^2)

}

objective = function(n, x, nstate) {

print(x[1])
print(x[2])

if (n == 2) {

inform <- 0

}
else {

inform <- -1
}

if (inform >= 0) {

if (nstate == 1) {

writeLines(toString(cat(sprintf("\n", "\n"))))

writeLines(toString(cat(sprintf("OBJFUN was just called for the first time",
"\n"))))

}
f <- peaks(x[1], x[2])

}
list(F = f, INFORM = as.integer(inform))

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/E05/e05jbf.pdf

e05jb 129

}
monitor = function(n, ncall, xbest, icount, ninit,

list, numpts, initpt, nbaskt, xbaskt, boxl, boxu, nstate) {

inform <- 0

if (nstate == 0 || nstate == 1) {

writeLines(toString(cat(sprintf("\n", "\n"))))

writeLines(toString(cat(sprintf("*** Begin monitoring information ***",
"\n"))))

writeLines(toString(cat(sprintf("\n", "\n"))))

}

if (nstate <= 0) {

writeLines(toString(cat(sprintf("Total sub-boxes = %s",
toString(icount[1]), "\n"))))

writeLines(toString(cat(sprintf("Total function evaluations = %s",
toString(ncall), "\n"))))

writeLines(toString(cat(sprintf("Total function evaluations used in local searches = %s",
toString(icount[2]), "\n"))))

writeLines(toString(cat(sprintf("Total points used in local search = %s",
toString(icount[3]), "\n"))))

writeLines(toString(cat(sprintf("Total sweeps through levels = %s",
toString(icount[4]), "\n"))))

writeLines(toString(cat(sprintf("Total splits by init. list = %s",
toString(icount[5]), "\n"))))

writeLines(toString(cat(sprintf("Lowest level with nonsplit boxes = %s",
toString(icount[6]), "\n"))))

writeLines(toString(cat(sprintf("Number of candidate minima in the %s",
"shopping basket%s", " = %s", toString(nbaskt),
"\n"))))

writeLines(toString(cat(sprintf("Shopping basket:", "\n"))))

130 e05jb

print(xbaskt)

writeLines(toString(cat(sprintf("\n", "\n"))))

writeLines(toString(cat(sprintf("*** End monitoring information ***",
"\n"))))

writeLines(toString(cat(sprintf("\n", "\n"))))

}
list(INFORM = as.integer(inform))

}

prob <- "peaks"

xres <- 100

yres <- 100

bl <- matrix(c(-3, -3), nrow = 2, ncol = 1, byrow = TRUE)

bu <- -bl

fglob <- -6.55

xglob <- matrix(c(0.23, -1.63), nrow = 2, ncol = 1,
byrow = TRUE)

n <- length(bl)

if (ifail == 0) {

writeLines(toString(cat(sprintf("\n", "\n"))))

writeLines(toString(cat(sprintf("Solve with no options or init.-list data",
"\n"))))

ibound <- 0

iinit <- 0

list <- as.matrix(mat.or.vec(n, 3))

numpts <- as.matrix(mat.or.vec(n, 1))

initpt <- as.matrix(mat.or.vec(n, 1))

e05jb 131

ans <- e05jb(objective, ibound, iinit, bl, bu, list, numpts,
initpt, monitor, optlist)

bl <- ans$BL
bu <- ans$BU
list <- ans$LIST
numpts <- ans$NUMPTS
initpt <- ans$INITPT
x <- ans$X
obj <- ans$OBJ
ifail <- ans$IFAIL

ifail <- ans$IFAIL

writeLines(toString(cat(sprintf("e05jbno options exited with ifail = %s",
toString(ifail), "\n"))))

if (ifail == 0) {

writeLines(toString(cat(sprintf("xbest:", "\n"))))

xbest <- ans$XBEST

print(xbest)
writeLines(toString(cat(sprintf("\n"))))

obj <- ans$OBJ

writeLines(toString(cat(sprintf("obj = %s", toString(obj),
"\n"))))

}
writeLines(toString(cat(sprintf("\n", "\n"))))

writeLines(toString(cat(sprintf("Solve with options and init.-list data",
"\n"))))

infbnd <-1.1579+077
iinit <- 3

list <- as.matrix(mat.or.vec(n, 3))

list[, 1] <- bl

list[, 3] <- bu

list[, 2] <- matrix(c(-1, 0), nrow = 2, ncol = 1, byrow = TRUE)

numpts <- 3 * matrix(1, n, 1)

132 f08fa

initpt <- 2 * matrix(1, n, 1)

ans <- e05jb(objective, ibound, iinit, bl, bu, list, numpts,
initpt, monitor, optlist)

ifail <- ans$IFAIL

writeLines(toString(cat(sprintf("e05jboptions exited with ifail = %s",
toString(ifail), "\n"))))

if (ifail == 0) {

writeLines(toString(cat(sprintf("xbest:", "\n"))))

xbest <- ans$X

print(xbest)
writeLines(toString(cat(sprintf("\n"))))

obj <- ans$OBJ

writeLines(toString(cat(sprintf("obj = %s", toString(obj),
"\n"))))

}
}

f08fa f08fa: Computes all eigenvalues and, optionally, eigenvectors of a real
symmetric matrix

Description

f08fa computes all the eigenvalues and, optionally, all the eigenvectors of a real n by n symmetric
matrix A.

Usage

f08fa(jobz, uplo, a,
n = nrow(a))

Arguments

jobz string
If jobz = ′N′, compute eigenvalues only.

uplo string
If uplo = ′U′, the upper triangular part of A is stored.

f08fa 133

a double array

The n by n matrix A.

See the Fortran Library documentation for a description of the storage layout for
this array.

n integer: default = nrow(a)

n, the order of the matrix A.

Details

R interface to the NAG Fortran routine F08FAF.

Value

A double array

If jobz = ′V′, then if IN = 0, a contains the orthonormal eigenvectors of the
matrix A.

W double array

If IN = 0, the eigenvalues in ascending order.

INFO integer

info = 0 unless the function detects an error (see the Errors section in Fortran
library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/F08/f08faf.pdf

Examples

jobz<-'Vectors'

uplo<-'Upper'

a<-matrix(c(1,2,3,4,0,2,3,4,0,0,3,4,0,0,0,4),nrow=4,ncol=4,byrow=TRUE)

f08fa(jobz,uplo,a)

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/F08/f08faf.pdf

134 g02aa

g02aa g02aa: Computes the nearest correlation matrix to a real square ma-
trix, using the method of Qi and Sun

Description

g02aa computes the nearest correlation matrix, in the Frobenius norm, to a given square, input
matrix.

Usage

g02aa(g,
n = nrow(g),
errtol = 0.0,
maxits = 0,
maxit = 0)

Arguments

g double array
G, the initial matrix.

n integer: default = nrow(g)
The size of the matrix G.

errtol double: default = 0.0
The termination tolerance for the Newton iteration. If errtol ≤ 0.0 then n ×√
machineprecision is used.

maxits integer: default = 0
Maxits specifies the maximum number of iterations used for the iterative scheme
used to solve the linear algebraic equations at each Newton step.

maxit integer: default = 0
Specifies the maximum number of Newton iterations.

Details

R interface to the NAG Fortran routine G02AAF.

Value

G double array
A symmetric matrix 1

2

(
G+GT

)
with the diagonal set to I .

X double array
Contains the nearest correlation matrix.

ITER integer
The number of Newton steps taken.

FEVAL integer
The number of function evaluations of the dual problem.

NRMGRD double
The norm of the gradient of the last Newton step.

g02aa 135

IFAIL integer
ifail = 0 unless the function detects an error or a warning has been flagged (see
the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/G02/g02aaf.pdf

Examples

ifail <- 0

g <- matrix(c(2, -1, 0, 0, -1, 2, -1, 0, 0, -1, 2,
-1, 0, 0, -1, 2), nrow = 4, ncol = 4, byrow = TRUE)

errtol <- 1e-07

maxits <- 200

maxit <- 10

ans <- g02aa(g)

if (ifail == 0) {

writeLines(sprintf("\n Nearest Correlation Matrix\n",
"\n"))

x <- ans$X

print(x)

iter <- ans$ITER

writeLines(sprintf("\n Number of Newton steps taken: %d",
iter))

feval <- ans$FEVAL

writeLines(sprintf(" Number of function evaluations: %d",
feval))

nrmgrd <- ans$NRMGRD
if (nrmgrd > errtol) {

writeLines(sprintf(" Norm of gradient of last Newton step: %6.4f",

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/G02/g02aaf.pdf

136 g02ab

nrmgrd))

}
}

g02ab g02ab: Computes the nearest correlation matrix to a real square ma-
trix, augmented g02aa to incorporate weights and bounds

Description

g02ab computes the nearest correlation matrix, in the Frobenius norm or weighted Frobenius norm,
and optionally with bounds on the eigenvalues, to a given square, input matrix.

Usage

g02ab(g, opt, alpha, w,
n = nrow(w),
errtol = 0.0,
maxits = 0,
maxit = 0)

Arguments

g double array
G, the initial matrix.

opt string
Indicates the problem to be solved.
opt = ′A′: The lower bound problem is solved.
opt = ′W′: The weighted norm problem is solved.
opt = ′B′: Both problems are solved.

alpha double
The value of α.

w double array
The square roots of the diagonal elements of W , that is the diagonal of W

1
2 .

n integer: default = nrow(w)
The size of the matrix G.

errtol double: default = 0.0
The termination tolerance for the Newton iteration. If errtol ≤ 0.0 then n ×√
machineprecision is used.

maxits integer: default = 0
Specifies the maximum number of iterations to be used by the iterative scheme
to solve the linear algebraic equations at each Newton step.

maxit integer: default = 0
Specifies the maximum number of Newton iterations.

g02ab 137

Details

R interface to the NAG Fortran routine G02ABF.

Value

G double array
A symmetric matrix 1

2

(
G+GT

)
with the diagonal set to I .

W double array
If opt = ′W′, ′B′, the array is scaled so max (Wi) = 1 for i = 1 . . . n.

X double array
Contains the nearest correlation matrix.

ITER integer
The number of Newton steps taken.

FEVAL integer
The number of function evaluations of the dual problem.

NRMGRD double
The norm of the gradient of the last Newton step.

IFAIL integer
ifail = 0 unless the function detects an error or a warning has been flagged (see
the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/G02/g02abf.pdf

Examples

ifail <- 0

opt <- "b"

alpha <- 0.02

g <- matrix(c(2, -1, 0, 0, -1, 2, -1, 0, 0, -1, 2,
-1, 0, 0, -1, 2), nrow = 4, ncol = 4, byrow = TRUE)

w <- matrix(c(100, 20, 20, 20), nrow = 4, ncol = 1,
byrow = TRUE)

errtol <- 1e-07

maxits <- 200

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/G02/g02abf.pdf

138 g02ae

maxit <- 10

ans <- g02ab(g, opt, alpha, w)

if (ifail == 0) {

writeLines(sprintf("\n Nearest Correlation Matrix\n",
"\n"))

x <- ans$X

print(x)

iter <- ans$ITER

writeLines(sprintf("\n Number of Newton steps taken: %d\n",
iter))

feval <- ans$FEVAL

writeLines(sprintf(" Number of function evaluations: %d\n",
feval))

alpha <- ans$ALPHA

writeLines(sprintf(" \n\n Alpha: %30.3f\n",
alpha))

}

g02ae g02ae: Computes the nearest correlation matrix with k-factor struc-
ture to a real square matrix

Description

g02ae computes the factor loading matrix associated with the nearest correlation matrix with k-
factor structure, in the Frobenius norm, to a given square, input matrix.

Usage

g02ae(g, k,
n = nrow(g),
errtol = 0.0,
maxit = 0)

g02ae 139

Arguments

g double array

G, the initial matrix.

k integer

k, the number of factors and columns of X .

n integer: default = nrow(g)

n, the size of the matrix G.

errtol double: default = 0.0

The termination tolerance for the projected gradient norm. See references for
further details. If errtol ≤ 0.0 then 0.01 is used. This is often a suitable default
value.

maxit integer: default = 0

Specifies the maximum number of iterations in the spectral projected gradient
method.

Details

R interface to the NAG Fortran routine G02AEF.

Value

G double array

A symmetric matrix 1
2

(
G+GT

)
with the diagonal elements set to unity.

X double array

Contains the matrix X .

ITER integer

The number of steps taken in the spectral projected gradient method.

FEVAL integer

The number of function evaluations.

NRMPGD double

The norm of the projected gradient at the final iteration.

IFAIL integer

ifail = 0 unless the function detects an error or a warning has been flagged (see
the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/G02/g02aef.pdf

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/G02/g02aef.pdf

140 NAGFWrappers

Examples

ifail <- 0

errtol <- 1e-07

g <- matrix(c(2, -1, 0, 0, -1, 2, -1, 0, 0, -1, 2,
-1, 0, 0, -1, 2), nrow = 4, ncol = 4, byrow = TRUE)

k <- 2

maxits <- 200

maxit <- 10

ans <- g02ae(g, k)

if (ifail == 0) {

writeLines(sprintf("\n Factor Loading Matrix x:\n",
"\n"))

x <- ans$X

print(x)

iter <- ans$ITER

writeLines(sprintf("\n Number of Newton steps taken: %d\n",
iter))

feval <- ans$FEVAL

writeLines(sprintf(" Number of function evaluations: %d\n",
feval))

}

NAGFWrappers Provides interfaces to NAG Fortran Library

Description

Provides interfaces to a selection of routines from the NAG Fortran Library

Details

Package: NAGFWrapper

s17dc 141

Type: Package
Version: 22.0
Date: 2011-06-01
License: Artistic-2.0
LazyLoad: yes

Author(s)

NAG

Maintainer: NAG <support@nag.co.uk>

References

www.nag.co.uk

s17dc s17dc: Bessel functions Y_nu + a(z), real a >= 0, complex z, nu = 0 ,
1 , 2 , . . .

Description

s17dc returns a sequence of values for the Bessel functions Yν+n (z) for complex z, non-negative ν
and n = 0, 1, . . . , N − 1, with an option for exponential scaling.

Usage

s17dc(fnu, z, n, scal)

Arguments

fnu double
ν, the order of the first member of the sequence of functions.

z complex
z, the argument of the functions.

n integer
N , the number of members required in the sequence Yν (z) , Yν+1 (z) , . . . , Yν+N−1 (z).

scal string
The scaling option.
scal = ′U′: The results are returned unscaled.
scal = ′S′: The results are returned scaled by the factor e−abs(Im(z)).

Details

R interface to the NAG Fortran routine S17DCF.

www.nag.co.uk

142 s17de

Value

CY complex array
The N required function values: cy[i] contains Yν+i−1 (z) for i = 1 . . . N .

NZ integer
The number of components of cy that are set to zero due to underflow. The
positions of such components in the array cy are arbitrary.

IFAIL integer
ifail = 0 unless the function detects an error or a warning has been flagged (see
the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/S/s17dcf.pdf

Examples

ifail<-0

fnu<-0

z<-complex(1,0.3,0.4)

n<-2

scal<-'U'

s17dc(fnu,z,n,scal)

s17de s17de: Bessel functions J_nu + a(z), real a >= 0, complex z, nu = 0 ,
1 , 2 , . . .

Description

s17de returns a sequence of values for the Bessel functions Jν+n (z) for complex z, non-negative ν
and n = 0, 1, . . . , N − 1, with an option for exponential scaling.

Usage

s17de(fnu, z, n, scal)

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/S/s17dcf.pdf

s17de 143

Arguments

fnu double
ν, the order of the first member of the sequence of functions.

z complex
The argument z of the functions.

n integer
N , the number of members required in the sequence Jν (z) , Jν+1 (z) , . . . , Jν+N−1 (z).

scal string
The scaling option.
scal = ′U′: The results are returned unscaled.
scal = ′S′: The results are returned scaled by the factor e−abs(Im(z)).

Details

R interface to the NAG Fortran routine S17DEF.

Value

CY complex array
The N required function values: cy[i] contains Jν+i−1 (z) for i = 1 . . . N .

NZ integer
The number of components of cy that are set to zero due to underflow. If nz > 0,
then elements cy[n− nz + 1], cy[n− nz + 2], . . . , cy[n] are set to zero.

IFAIL integer
ifail = 0 unless the function detects an error or a warning has been flagged (see
the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/S/s17def.pdf

Examples

ifail<-0

fnu<-0

z<-complex(1,0.3,0.4)

n<-2

scal<-'U'

s17de(fnu,z,n,scal)

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/S/s17def.pdf

144 s17dg

s17dg s17dg: Airy functions Ai(z) and Ai’(z), complex z

Description

s17dg returns the value of the Airy function Ai (z) or its derivative Ai′ (z) for complex z, with an
option for exponential scaling.

Usage

s17dg(deriv, z, scal)

Arguments

deriv string
Specifies whether the function or its derivative is required.
If deriv = ′F′, Ai (z) is returned.
If deriv = ′D′, Ai′ (z) is returned.

z complex
The argument z of the function.

scal string
The scaling option.
scal = ′U′: The result is returned unscaled.
scal = ′S′: The result is returned scaled by the factor e2z

√
z/3.

Details

R interface to the NAG Fortran routine S17DGF.

Value

AI complex
The required function or derivative value.

NZ integer
Indicates whether or not ai is set to zero due to underflow. This can only occur
when scal = ′U′.
nz = 0: ai is not set to zero.
nz = 1: ai is set to zero.

IFAIL integer
ifail = 0 unless the function detects an error or a warning has been flagged (see
the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/S/s17dgf.pdf

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/S/s17dgf.pdf

s17dh 145

Examples

ifail<-0

deriv<-'F'

z<-complex(1,0.3,0.4)

scal<-'U'

s17dg(deriv,z,scal)

s17dh s17dh: Airy functions Bi(z) and Bi’(z), complex z

Description

s17dh returns the value of the Airy function Bi (z) or its derivative Bi′ (z) for complex z, with an
option for exponential scaling.

Usage

s17dh(deriv, z, scal)

Arguments

deriv string
Specifies whether the function or its derivative is required.
deriv = ′F′: Bi (z) is returned.
deriv = ′D′: Bi′ (z) is returned.

z complex
The argument z of the function.

scal string
The scaling option.
scal = ′U′: The result is returned unscaled.
scal = ′S′: The result is returned scaled by the factor eabs(Re(2z

√
z/3)).

Details

R interface to the NAG Fortran routine S17DHF.

Value

BI complex
The required function or derivative value.

IFAIL integer
ifail = 0 unless the function detects an error or a warning has been flagged (see
the Errors section in Fortran library documentation).

146 s17dl

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/S/s17dhf.pdf

Examples

ifail<-0

deriv<-'F'

z<-complex(1,0.3,0.4)

scal<-'U'

s17dh(deriv,z,scal)

s17dl s17dl: Hankel functions H_nu + a^(j)(z), j = 1 , 2, real a >= 0, com-
plex z, nu=0 , 1 , 2 , . . .

Description

s17dl returns a sequence of values for the Hankel functions H(1)
ν+n (z) or H(2)

ν+n (z) for complex z,
non-negative ν and n = 0, 1, . . . , N − 1, with an option for exponential scaling.

Usage

s17dl(m, fnu, z, n, scal)

Arguments

m integer
The kind of functions required.
m = 1: The functions are H(1)

ν (z).

m = 2: The functions are H(2)
ν (z).

fnu double
ν, the order of the first member of the sequence of functions.

z complex
The argument z of the functions.

n integer
N , the number of members required in the sequenceH(m)

ν (z) , H
(m)
ν+1 (z) , . . . ,H

(m)
ν+N−1 (z).

scal string
The scaling option.
scal = ′U′: The results are returned unscaled.
scal = ′S′: The results are returned scaled by the factor e−iz when m = 1, or
by the factor eiz when m = 2.

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/S/s17dhf.pdf

s18dc 147

Details

R interface to the NAG Fortran routine S17DLF.

Value

CY complex array

The N required function values: cy[i] contains H(m)
ν+i−1 (z) for i = 1 . . . N .

NZ integer
The number of components of cy that are set to zero due to underflow. If nz > 0,
then if Im (z) > 0.0 and m = 1, or Im (z) < 0.0 and m = 2, elements
cy[1], cy[2], . . . , cy[nz] are set to zero. In the complementary half-planes, nz
simply states the number of underflows, and not which elements they are.

IFAIL integer
ifail = 0 unless the function detects an error or a warning has been flagged (see
the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/S/s17dlf.pdf

Examples

ifail<-0

m<-1

fnu<-0

z<-complex(1,0.3,0.4)

n<-2

scal<-'U'

s17dl(m,fnu,z,n,scal)

s18dc s18dc: Modified Bessel functions K_nu + a(z), real a >= 0, complex
z, nu = 0 , 1 , 2 , . . .

Description

s18dc returns a sequence of values for the modified Bessel functions Kν+n (z) for complex z,
non-negative ν and n = 0, 1, . . . , N − 1, with an option for exponential scaling.

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/S/s17dlf.pdf

148 s18dc

Usage

s18dc(fnu, z, n, scal)

Arguments

fnu double
ν, the order of the first member of the sequence of functions.

z complex
The argument z of the functions.

n integer
N , the number of members required in the sequenceKν (z) ,Kν+1 (z) , . . . ,Kν+N−1 (z).

scal string
The scaling option.
scal = ′U′: The results are returned unscaled.
scal = ′S′: The results are returned scaled by the factor ez .

Details

R interface to the NAG Fortran routine S18DCF.

Value

CY complex array
The N required function values: cy[i] contains Kν+i−1 (z) for i = 1 . . . N .

NZ integer
The number of components of cy that are set to zero due to underflow. If nz > 0
and Re (z) ≥ 0.0, elements cy[1], cy[2], . . . , cy[nz] are set to zero. If Re (z) <
0.0, nz simply states the number of underflows, and not which elements they
are.

IFAIL integer
ifail = 0 unless the function detects an error or a warning has been flagged (see
the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/S/s18dcf.pdf

Examples

ifail<-0

fnu<-0

z<-complex(1,0.3,0.4)

n<-2

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/S/s18dcf.pdf

s18de 149

scal<-'U'

s18dc(fnu,z,n,scal)

s18de s18de: Modified Bessel functions I_nu + a(z), real a >= 0, complex z,
nu = 0 , 1 , 2 , . . .

Description

s18de returns a sequence of values for the modified Bessel functions Iν+n (z) for complex z, non-
negative ν and n = 0, 1, . . . , N − 1, with an option for exponential scaling.

Usage

s18de(fnu, z, n, scal)

Arguments

fnu double
ν, the order of the first member of the sequence of functions.

z complex
The argument z of the functions.

n integer
N , the number of members required in the sequence Iν (z) , Iν+1 (z) , . . . , Iν+N−1 (z).

scal string
The scaling option.
scal = ′U′: The results are returned unscaled.
scal = ′S′: The results are returned scaled by the factor e−abs(Re(z)).

Details

R interface to the NAG Fortran routine S18DEF.

Value

CY complex array
The N required function values: cy[i] contains Iν+i−1 (z) for i = 1 . . . N .

NZ integer
The number of components of cy that are set to zero due to underflow.

IFAIL integer
ifail = 0 unless the function detects an error or a warning has been flagged (see
the Errors section in Fortran library documentation).

Author(s)

NAG

150 s18gk

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/S/s18def.pdf

Examples

ifail<-0

fnu<-0

z<-complex(1,0.3,-0.4)

n<-2

scal<-'U'

s18de(fnu,z,n,scal)

s18gk s18gk: Bessel function of the 1st kind J_alpha +/- n(z)

Description

s18gk returns a sequence of values for the Bessel functions Jα+n−1 (z) or Jα−n+1 (z) for complex
z, non-negative α < 1 and n = 1, 2, . . . , abs(N) + 1.

Usage

s18gk(z, a, nl)

Arguments

z complex
The argument z of the function.

a double
The order α of the first member in the required sequence of function values.

nl integer
The value of N .

Details

R interface to the NAG Fortran routine S18GKF.

Value

B complex array
With ifail = 0, ifail = 3, the required sequence of function values: b[n] contains
Jα+n−1 (z) if nl ≥ 0 and Jα−n+1 (z) otherwise for n = 1 . . . abs (nl) + 1.

IFAIL integer
ifail = 0 unless the function detects an error or a warning has been flagged (see
the Errors section in Fortran library documentation).

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/S/s18def.pdf

s22aa 151

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/S/s18gkf.pdf

Examples

ifail<-0

z<-complex(1,0.6,-0.8)

a<-0

nl<-3

s18gk(z,a,nl)

s22aa s22aa: Legendre functions of 1st kind P_n^m(x) or overlineP_n^m(x)

Description

s22aa returns a sequence of values for either the unnormalized or normalized Legendre functions of
the first kind Pmn (x) or Pmn (x) for real x of a given order m and degree n = 0, 1, . . . , N .

Usage

s22aa(mode, x, m, nl)

Arguments

mode integer
Indicates whether the sequence of function values is to be returned unnormalized
or normalized.
mode = 1: The sequence of function values is returned unnormalized.
mode = 2: The sequence of function values is returned normalized.

x double
The argument x of the function.

m integer
The order m of the function.

nl integer
The degree N of the last function required in the sequence.

Details

R interface to the NAG Fortran routine S22AAF.

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/S/s18gkf.pdf

152 x02aj

Value

P double array
The required sequence of function values as follows:
if mode = 1, p[n] contains Pmn (x) for n = 0 . . . N ;
if mode = 2, p[n] contains Pmn (x) for n = 0 . . . N .

IFAIL integer
ifail = 0 unless the function detects an error or a warning has been flagged (see
the Errors section in Fortran library documentation).

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/S/s22aaf.pdf

Examples

ifail<-0

mode<-1

x<-0.5

m<-2

nl<-3

s22aa(mode,x,m,nl)

x02aj x02aj: The machine precision

Description

x02aj returns ε, the value machine precision.

Usage

x02aj()

Details

R interface to the NAG Fortran routine X02AJF.

Value

x02aj returns ε, the value machine precision.

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/S/s22aaf.pdf

x02al 153

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/X02/x02ajf.pdf

Examples

x02aj()[["result"]]

x02al x02al: The largest positive model number

Description

x02al returns the largest positive floating point number.

Usage

x02al()

Details

R interface to the NAG Fortran routine X02ALF.

Value

x02al returns the largest positive floating point number.

Author(s)

NAG

References

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/X02/x02alf.pdf

Examples

x02al()[["result"]]

http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/X02/x02ajf.pdf
http://www.nag.co.uk/numeric/FL/nagdoc_fl23/pdf/X02/x02alf.pdf

Index

∗Topic Fortran
NAGFWrappers, 140

∗Topic NAG
NAGFWrappers, 140

∗Topic math
a00ad, 2
e04ab, 5
e04bb, 7
e04cb, 9
e04dg, 11
e04fc, 13
e04fy, 17
e04gd, 18
e04gy, 22
e04gz, 24
e04hc, 26
e04hd, 28
e04he, 30
e04hy, 34
e04jc, 37
e04jy, 40
e04kd, 42
e04ky, 46
e04kz, 49
e04lb, 51
e04ly, 56
e04mf, 58
e04nc, 61
e04nf, 64
e04nk, 68
e04nq, 73
e04uc, 79
e04uf, 85
e04ug, 93
e04us, 101
e04vj, 106
e04wd, 109
e04xa, 115
e04ya, 118
e04yb, 120
e04yc, 123
e05jb, 125
f08fa, 132

g02aa, 134
g02ab, 136
g02ae, 138
s17dc, 141
s17de, 142
s17dg, 144
s17dh, 145
s17dl, 146
s18dc, 147
s18de, 149
s18gk, 150
s22aa, 151
x02aj, 152
x02al, 153

∗Topic optimize
e04ab, 5
e04bb, 7
e04cb, 9
e04dg, 11
e04fc, 13
e04fy, 17
e04gd, 18
e04gy, 22
e04gz, 24
e04hc, 26
e04hd, 28
e04he, 30
e04hy, 34
e04jc, 37
e04jy, 40
e04kd, 42
e04ky, 46
e04kz, 49
e04lb, 51
e04ly, 56
e04mf, 58
e04nc, 61
e04nf, 64
e04nk, 68
e04nq, 73
e04uc, 79
e04uf, 85
e04ug, 93

154

INDEX 155

e04us, 101
e04vj, 106
e04wd, 109
e04xa, 115
e04ya, 118
e04yb, 120
e04yc, 123
e05jb, 125

∗Topic package
NAGFWrappers, 140

a00ad, 2

e04ab, 5
e04bb, 7
e04cb, 9
e04dg, 11
e04fc, 13
e04fy, 17
e04gd, 18
e04gy, 22
e04gz, 24
e04hc, 26
e04hd, 28
e04he, 30
e04hy, 34
e04jc, 37
e04jy, 40
e04kd, 42
e04ky, 46
e04kz, 49
e04lb, 51
e04ly, 55
e04mf, 58
e04nc, 61
e04nf, 64
e04nk, 68
e04nq, 73
e04uc, 79
e04uf, 85
e04ug, 93
e04us, 101
e04vj, 106
e04wd, 109
e04xa, 115
e04ya, 118
e04yb, 120
e04yc, 123
e05jb, 125

f08fa, 132

g02aa, 134

g02ab, 136
g02ae, 138

NAGFWrappers, 140

s17dc, 141
s17de, 142
s17dg, 144
s17dh, 145
s17dl, 146
s18dc, 147
s18de, 149
s18gk, 150
s22aa, 151

x02aj, 152
x02al, 153

	a00ad
	e04ab
	e04bb
	e04cb
	e04dg
	e04fc
	e04fy
	e04gd
	e04gy
	e04gz
	e04hc
	e04hd
	e04he
	e04hy
	e04jc
	e04jy
	e04kd
	e04ky
	e04kz
	e04lb
	e04ly
	e04mf
	e04nc
	e04nf
	e04nk
	e04nq
	e04uc
	e04uf
	e04ug
	e04us
	e04vj
	e04wd
	e04xa
	e04ya
	e04yb
	e04yc
	e05jb
	f08fa
	g02aa
	g02ab
	g02ae
	NAGFWrappers
	s17dc
	s17de
	s17dg
	s17dh
	s17dl
	s18dc
	s18de
	s18gk
	s22aa
	x02aj
	x02al
	Index

