Program g13ebfe
! G13EBF Example Program Text
! Mark 30.3 Release. nAG Copyright 2024.
! .. Use Statements ..
Use nag_library, Only: ddot, dgemv, dpotrf, dsyrk, dtrsv, g13ebf, &
nag_wp, x04caf
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: zero = 0.0_nag_wp
Integer, Parameter :: inc1 = 1, nin = 5, nout = 6
! .. Local Scalars ..
Real (Kind=nag_wp) :: dev, tol
Integer :: i, ifail, info, istep, l, ldm, ldq, &
lds, lwk, m, n, ncall, tdq
Logical :: full, stq
! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), ax(:), b(:,:), c(:,:), &
h(:,:), k(:,:), p(:,:), q(:,:), &
r(:,:), s(:,:), u(:,:), us(:,:), &
wk(:), x(:), y(:)
Integer, Allocatable :: iwk(:)
! .. Intrinsic Procedures ..
Intrinsic :: log
! .. Executable Statements ..
Write (nout,*) 'G13EBF Example Program Results'
Write (nout,*)
! Skip heading in data file
Read (nin,*)
! Read in problem size
Read (nin,*) n, m, l, stq
lds = n
If (.Not. stq) Then
ldq = l
tdq = l
Else
ldq = 1
tdq = 1
End If
ldm = m
lwk = (n+m)*(n+m+l)
Allocate (a(lds,n),b(lds,l),q(ldq,tdq),c(ldm,n),r(ldm,m),s(lds,n), &
k(lds,m),h(ldm,m),u(lds,n),iwk(m),wk(lwk),ax(n),y(m),x(n),p(lds,n), &
us(lds,n))
! Read in the state covariance matrix, S
Read (nin,*)(s(i,1:n),i=1,n)
! Read in flag indicating whether S is the full matrix, or its
! Cholesky decomposition.
Read (nin,*) full
! If required, perform Cholesky decomposition on S
If (full) Then
! The NAG name equivalent of dpotrf is f07fdf
Call dpotrf('L',n,s,lds,info)
If (info>0) Then
Write (nout,*) ' S not positive definite'
Go To 100
End If
End If
! Read in initial state vector
Read (nin,*) ax(1:n)
! Read in transition matrix, A
Read (nin,*)(a(i,1:n),i=1,n)
! Read in noise coefficient matrix, B
Read (nin,*)(b(i,1:l),i=1,n)
! Read in measurement coefficient matrix, C
Read (nin,*)(c(i,1:n),i=1,m)
! Read in measurement noise covariance matrix, R
Read (nin,*)(r(i,1:m),i=1,m)
! Read in flag indicating whether R is the full matrix, or its Cholesky
! decomposition
Read (nin,*) full
! If required, perform Cholesky decomposition on R
If (full) Then
! The NAG name equivalent of dpotrf is f07fdf
Call dpotrf('L',m,r,ldm,info)
If (info>0) Then
Write (nout,*) ' R not positive definite'
Go To 100
End If
End If
! Read in state noise matrix Q, if not assume to be identity matrix
If (.Not. stq) Then
Read (nin,*)(q(i,1:l),i=1,l)
! Read in flag indicating whether Q is the full matrix, or
! its Cholesky decomposition
Read (nin,*) full
! Perform Cholesky factorization on Q, if full matrix is supplied
If (full) Then
! The NAG name equivalent of dpotrf is f07fdf
Call dpotrf('L',l,q,ldq,info)
If (info>0) Then
Write (nout,*) ' Q not positive definite'
Go To 100
End If
End If
End If
! Read in control parameters
Read (nin,*) ncall, tol
! Display titles
Write (nout,*) ' Residuals'
Write (nout,*)
! Loop through data
dev = 0.0E0_nag_wp
Do istep = 1, ncall
! Read in observed values
Read (nin,*) y(1:m)
If (istep==1) Then
! Make first call to G13EBF
ifail = 0
Call g13ebf('T',n,m,l,a,lds,b,stq,q,ldq,c,ldm,r,s,k,h,u,tol,iwk,wk, &
ifail)
! The NAG name equivalent of dgemv is f06paf
Call dgemv('N',n,n,one,u,lds,ax,inc1,zero,x,inc1)
Else
! Make remaining calls to G13EBF
ifail = 0
Call g13ebf('H',n,m,l,a,lds,b,stq,q,ldq,c,ldm,r,s,k,h,u,tol,iwk,wk, &
ifail)
End If
! Perform time and measurement update x <= Ax + K(y-Cx)
! The NAG name equivalent of dgemv is f06paf
Call dgemv('N',m,n,-one,c,ldm,x,inc1,one,y,inc1)
Call dgemv('N',n,n,one,a,lds,x,inc1,zero,ax,inc1)
Call dgemv('N',n,m,one,k,lds,y,inc1,one,ax,inc1)
x(1:n) = ax(1:n)
! Display the residuals
Write (nout,99999) y(1:m)
! Update log-likelihood
! The NAG name equivalent of dtrsv is f06pjf
Call dtrsv('L','N','N',m,h,ldm,y,inc1)
! The NAG name equivalent of ddot is f06eaf
dev = dev + ddot(m,y,1,y,1)
Do i = 1, m
dev = dev + 2.0_nag_wp*log(h(i,i))
End Do
End Do
! Calculate back-transformed x <- U^T x
! The NAG name equivalent of dgemv is f06paf
Call dgemv('T',n,n,one,u,lds,ax,inc1,zero,x,inc1)
! Compute back-transformed P from S
Do i = 1, n
Call dgemv('T',n-i+1,n,one,u(i,1),lds,s(i,i),inc1,zero,us(1,i),inc1)
End Do
! The NAG name equivalent of dsyrk is f06ypf
Call dsyrk('L','N',n,n,one,us,lds,zero,p,lds)
! Display final results
Write (nout,*)
Write (nout,*) ' Final X(I+1:I) '
Write (nout,99999) x(1:n)
Write (nout,*)
Flush (nout)
ifail = 0
Call x04caf('Lower','N',n,n,p,lds,'Final Value of P',ifail)
Write (nout,99998) ' Deviance = ', dev
100 Continue
99999 Format (6F12.4)
99998 Format (A,E13.4)
End Program g13ebfe