Program f08kafe
! F08KAF Example Program Text
! Mark 30.3 Release. nAG Copyright 2024.
! .. Use Statements ..
Use nag_library, Only: dgelss, dnrm2, nag_wp
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Integer, Parameter :: nb = 64, nin = 5, nout = 6
! .. Local Scalars ..
Real (Kind=nag_wp) :: rcond, rnorm
Integer :: i, info, lda, lwork, m, n, rank
! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), b(:), s(:), work(:)
! .. Executable Statements ..
Write (nout,*) 'F08KAF Example Program Results'
Write (nout,*)
! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
lda = m
lwork = 3*n + nb*(m+n)
Allocate (a(lda,n),b(m),s(n),work(lwork))
! Read A and B from data file
Read (nin,*)(a(i,1:n),i=1,m)
Read (nin,*) b(1:m)
! Choose RCOND to reflect the relative accuracy of the input data
rcond = 0.01_nag_wp
! Solve the least squares problem min( norm2(b - Ax) ) for the x
! of minimum norm.
! The NAG name equivalent of dgelss is f08kaf
Call dgelss(m,n,1,a,lda,b,m,s,rcond,rank,work,lwork,info)
If (info==0) Then
! Print solution
Write (nout,*) 'Least squares solution'
Write (nout,99999) b(1:n)
! Print the effective rank of A
Write (nout,*)
Write (nout,*) 'Tolerance used to estimate the rank of A'
Write (nout,99998) rcond
Write (nout,*) 'Estimated rank of A'
Write (nout,99997) rank
! Print singular values of A
Write (nout,*)
Write (nout,*) 'Singular values of A'
Write (nout,99999) s(1:n)
! Compute and print estimate of the square root of the
! residual sum of squares
If (rank==n) Then
! The NAG name equivalent of dnrm2 is f06ejf
rnorm = dnrm2(m-n,b(n+1),1)
Write (nout,*)
Write (nout,*) 'Square root of the residual sum of squares'
Write (nout,99998) rnorm
End If
Else
Write (nout,*) 'The SVD algorithm failed to converge'
End If
99999 Format (1X,7F11.4)
99998 Format (3X,1P,E11.2)
99997 Format (1X,I6)
End Program f08kafe