NAG Library Manual, Mark 30.3
Interfaces:  FL   CL   CPP   AD 

NAG CL Interface Introduction
Example description

nag_sparseig_real_monit (f12aec) Example Program Results
Iteration   1,  No. converged =   0, norm of estimates =    1.05198320e-01
Iteration   2,  No. converged =   0, norm of estimates =    1.18821782e-03
Iteration   3,  No. converged =   0, norm of estimates =    1.38923424e-06
Iteration   4,  No. converged =   0, norm of estimates =    3.93878037e-09
Iteration   5,  No. converged =   0, norm of estimates =    1.15839744e-11
Iteration   6,  No. converged =   0, norm of estimates =    5.22183096e-14

 The    4 generalized Ritz values closest to (   0.4000 ,    0.6000 ) are:

       1     (  0.5000, -0.5958 )
       2     (  0.5000,  0.5958 )
       3     (  0.5000, -0.6331 )
       4     (  0.5000,  0.6331 )