nagcpp::opt::handle_solve_dfls_rcomm Example
---------------------------------------------------
E04F(G|F)), Derivative free solver for data fitting
(nonlinear least-squares problems)
---------------------------------------------------
Problem statistics
Number of variables 2
Number of unconstrained variables 0
Number of fixed variables 0
Starting interpolation points 3
Total interpolation points 3
Number of residuals 2
Begin of Options
Print File = 6 * d
Print Level = 2 * d
Print Options = Yes * d
Print Solution = All * U
Monitoring File = -1 * d
Monitoring Level = 4 * d
Dfo Print Frequency = 1 * d
Dfo Monitor Frequency = 0 * d
Infinite Bound Size = 1.00000E+20 * d
Stats Time = No * d
Time Limit = 1.00000E+06 * d
Dfo Initial Interp Points = Coordinate * d
Dfo Max Objective Calls = 500 * d
Dfo Max Soft Restarts = 5 * d
Dfo Max Unsucc Soft Restarts = 3 * d
Dfo Maximum Slow Steps = 20 * d
Dfo Noise Level = 0.00000E+00 * d
Dfo Noisy Problem = No * d
Dfo Number Initial Points = 0 * d
Dfo Number Interp Points = 0 * d
Dfo Number Soft Restarts Pts = 3 * d
Dfo Random Seed = -1 * d
Dfo Starting Trust Region = 1.00000E-01 * d
Dfo Trust Region Slow Tol = 1.02648E-04 * d
Dfo Trust Region Tolerance = 5.00000E-06 * U
Dfo Version = Latest * d
Dfls Small Residuals Tol = 1.08158E-12 * d
End of Options
----------------------------------------
step | obj rho | nf |
----------------------------------------
1 | 4.02E+00 1.00E-01 | 4 |
2 | 3.66E+00 1.00E-01 | 5 |
3 | 3.48E+00 1.00E-01 | 6 |
4 | 2.32E+00 1.00E-01 | 9 |
5 | 1.94E+00 1.00E-01 | 10 |
6 | 1.63E+00 1.00E-01 | 12 |
7 | 9.65E-01 1.00E-01 | 14 |
8 | 7.29E-01 1.00E-01 | 16 |
9 | 4.77E-01 1.00E-01 | 19 |
10 | 1.29E-01 1.00E-01 | 21 |
11 | 5.70E-02 1.00E-01 | 23 |
12 | 2.21E-04 1.00E-01 | 25 |
13 | 1.28E-04 1.00E-02 | 26 |
14 | 1.36E-08 1.00E-03 | 28 |
15 | 1.03E-23 5.00E-06 | 32 |
----------------------------------------
Status: Converged, small residuals
Value of the objective 1.03447E-23
Number of objective function evaluations 32
Number of steps 15
Primal variables:
idx Lower bound Value Upper bound
1 -1.50000E+00 1.00000E+00 2.00000E+00
2 -2.00000E+00 1.00000E+00 inf