E04US_T2W_F Example Program Results
*** e04us
Parameters
----------
Linear constraints..... 1 Variables.............. 2
Nonlinear constraints.. 1 Subfunctions........... 44
Infinite bound size.... 1.00E+20 COLD start.............
Infinite step size..... 1.00E+20 EPS (machine precision) 1.11E-16
Step limit............. 2.00E+00 Hessian................ NO
Linear feasibility..... 1.05E-08 Crash tolerance........ 1.00E-02
Nonlinear feasibility.. 1.05E-08 Optimality tolerance... 3.26E-12
Line search tolerance.. 9.00E-01 Function precision..... 4.37E-15
Derivative level....... 3 Monitoring file........ -1
Verify level........... 0
Major iterations limit. 50 Major print level...... 1
Minor iterations limit. 50 Minor print level...... 0
J'J initial Hessian.... Reset frequency........ 2
Workspace provided is IWORK( 9), WORK( 306).
To solve problem we need IWORK( 9), WORK( 306).
Verification of the constraint gradients.
-----------------------------------------
The constraint Jacobian seems to be ok.
The largest relative error was 1.89E-08 in constraint 1
Verification of the objective gradients.
----------------------------------------
The objective Jacobian seems to be ok.
The largest relative error was 1.04E-08 in subfunction 3
Exit from NP problem after 6 major iterations,
8 minor iterations.
Varbl State Value Lower Bound Upper Bound Lagr Mult Slack
V 1 FR 0.419953 0.400000 None . 1.9953E-02
V 2 FR 1.28485 -4.00000 None . 5.285
L Con State Value Lower Bound Upper Bound Lagr Mult Slack
L 1 FR 1.70480 1.00000 None . 0.7048
N Con State Value Lower Bound Upper Bound Lagr Mult Slack
N 1 LL -9.767742E-13 . None 3.3358E-02 -9.7677E-13
Exit e04us - Optimal solution found.
Final objective value = 0.1422983E-01
Optimal solution = 0.01423
Solution point, x
1 2
1 0.4200 1.2848
Derivatives calculated: Second order tangents
Computational mode : algorithmic
Derivatives:
d^2x(1)/druser(1:44)^2
1 2 3 4 5
1 2.5741E-09 9.3099E-09 -3.7407E-04 -3.1987E-04 -3.7407E-04
6 7 8 9 10
1 -3.1987E-04 -5.8175E-05 -5.8175E-05 -4.7541E-05 -2.6329E-05
11 12 13 14 15
1 -5.2694E-06 -2.6562E-06 -2.6562E-06 -3.8116E-07 -2.4296E-07
16 17 18 19 20
1 -2.4296E-07 -6.2070E-08 -4.8557E-08 -6.0522E-10 -6.0522E-10
21 22 23 24 25
1 -1.8652E-09 7.1394E-11 7.1394E-11 1.8547E-10 -1.9250E-12
26 27 28 29 30
1 1.8477E-11 1.8477E-11 1.2594E-12 2.1930E-12 1.2594E-12
31 32 33 34 35
1 2.8451E-13 3.8112E-13 9.7139E-14 9.7139E-14 1.2470E-13
36 37 38 39 40
1 2.6799E-14 2.9807E-14 9.6518E-15 2.8849E-15 3.6909E-15
41 42 43 44
1 1.0278E-15 1.0278E-15 3.6100E-16 1.1645E-16