E04NE_A1W_F Example Program Results
*** e04nc
Parameters
----------
Problem type........... LS1 Hessian................ NO
Linear constraints..... 3 Feasibility tolerance.. 1.05E-08
Variables.............. 9 Crash tolerance........ 1.00E-02
Objective matrix rows.. 10 Rank tolerance......... 1.11E-14
Infinite bound size.... 1.00E+20 COLD start.............
Infinite step size..... 1.00E+20 EPS (machine precision) 1.11E-16
Print level............ 1 Feasibility phase itns. 60
Monitoring file........ -1 Optimality phase itns. 60
Workspace provided is IWORK( 9), WORK( 261).
To solve problem we need IWORK( 9), WORK( 261).
Rank of the objective function data matrix = 6
Exit from LS problem after 13 iterations.
Varbl State Value Lower Bound Upper Bound Lagr Mult Slack
V 1 LL 0.00000 . 2.00000 0.1572 .
V 2 FR 4.152607E-02 . 2.00000 . 4.1526E-02
V 3 FR 0.587176 None 2.00000 . 1.413
V 4 LL 0.00000 . 2.00000 0.8782 .
V 5 FR 9.964323E-02 . 2.00000 . 9.9643E-02
V 6 LL 0.00000 . 2.00000 0.1473 .
V 7 FR 4.905781E-02 . 2.00000 . 4.9058E-02
V 8 LL 0.00000 . 2.00000 0.8603 .
V 9 FR 0.305649 . 2.00000 . 0.3056
L Con State Value Lower Bound Upper Bound Lagr Mult Slack
L 1 LL 2.00000 2.00000 None 0.3777 -4.4409E-16
L 2 UL 2.00000 None 2.00000 -5.7914E-02 .
L 3 LL 1.00000 1.00000 4.00000 0.1075 .
Exit e04nc - Optimal LS solution.
Final LS objective value = 0.8134082E-01
Derivatives calculated: First order adjoints
Computational mode : algorithmic
dobj/db
1
1 -0.0831
2 0.1320
3 0.0633
4 -0.0831
5 -0.0831
6 -0.0099
7 0.0166
8 -0.0831
9 -0.1562
10 -0.2981
dobj/dbl
1
1 1.5715E-01
2 0.0000E+00
3 0.0000E+00
4 8.7817E-01
5 0.0000E+00
6 1.4728E-01
7 -3.5101E-16
8 8.6026E-01
9 0.0000E+00
10 3.7775E-01
11 0.0000E+00
12 1.0753E-01
dobj/dbu
1
1 0.0000
2 0.0000
3 0.0000
4 0.0000
5 0.0000
6 0.0000
7 0.0000
8 0.0000
9 0.0000
10 0.0000
11 -0.0579
12 0.0000