C09FZF Example Program Results
MLDWT :: Wavelet : Haar
End mode : Period
M : 4
N : 4
FR : 4
Original data A :
Frame 1 :
0.0100 0.0100 0.0100 0.0100
1.0000 1.0000 1.0000 1.0000
0.0100 0.0100 0.0100 0.0100
1.0000 1.0000 1.0000 1.0000
Frame 2 :
1.0000 1.0000 1.0000 1.0000
0.0100 0.0100 0.0100 0.0100
1.0000 1.0000 1.0000 1.0000
0.0100 0.0100 0.0100 0.0100
Frame 3 :
0.0100 0.0100 0.0100 0.0100
1.0000 1.0000 1.0000 1.0000
0.0100 0.0100 0.0100 0.0100
1.0000 1.0000 1.0000 1.0000
Frame 4 :
1.0000 1.0000 1.0000 1.0000
0.0100 0.0100 0.0100 0.0100
1.0000 1.0000 1.0000 1.0000
0.0100 0.0100 0.0100 0.0100
Original data plus noise AN :
Frame 1 :
0.0135 -0.0093 -0.0004 0.0378
1.0015 0.9842 1.0007 0.9889
-0.0017 0.0139 0.0138 -0.0049
0.9899 1.0070 1.0049 0.9983
Frame 2 :
1.0094 1.0080 0.9921 0.9902
0.0105 -0.0009 0.0160 0.0197
0.9994 1.0044 0.9956 1.0014
0.0091 -0.0084 0.0187 0.0023
Frame 3 :
0.0058 -0.0053 0.0011 0.0159
1.0113 0.9894 1.0018 0.9992
0.0106 0.0082 0.0093 0.0153
1.0023 1.0157 1.0084 0.9834
Frame 4 :
0.9969 1.0010 0.9904 0.9968
0.0227 0.0022 0.0062 0.0214
0.9948 0.9981 0.9951 0.9968
0.0121 0.0103 0.0114 0.0206
Without denoising Mean Square Error is 0.000081
Number of coefficients denoised is 55 out of 63
With denoising Mean Square Error is 0.000015
Reconstruction of denoised input D :
Frame 1 :
0.0053 0.0053 0.0166 0.0166
1.0026 1.0026 0.9913 0.9913
0.0055 0.0055 0.0077 0.0077
1.0025 1.0025 1.0003 1.0003
Frame 2 :
1.0026 1.0026 0.9913 0.9913
0.0053 0.0053 0.0166 0.0166
1.0025 1.0025 1.0003 1.0003
0.0055 0.0055 0.0077 0.0077
Frame 3 :
0.0073 0.0073 0.0110 0.0110
1.0006 1.0006 0.9969 0.9969
0.0078 0.0078 0.0131 0.0131
1.0002 1.0002 0.9949 0.9949
Frame 4 :
1.0006 1.0006 0.9969 0.9969
0.0073 0.0073 0.0110 0.0110
1.0002 1.0002 0.9949 0.9949
0.0078 0.0078 0.0131 0.0131