/* nag_sparse_complex_gen_precon_jacobi (f11dxc) Example Program.
*
* Copyright 2024 Numerical Algorithms Group.
*
* Mark 30.0, 2024.
*/
#include <math.h>
#include <nag.h>
int main(void) {
/* Scalars */
Integer exit_status = 0;
double anorm, sigmax, stplhs, stprhs, tol;
Integer i, irevcm, iterm, itn, lwork, lwreq, m, maxitn, monit, n, niter, nnz;
/* Arrays */
char nag_enum_arg[100];
Complex *a = 0, *b = 0, *diag = 0, *work = 0, *x = 0;
double *wgt = 0;
Integer *icol = 0, *irow = 0;
/* NAG types */
Nag_InitializeA init;
Nag_SparseNsym_Method method;
Nag_SparseNsym_PrecType precon;
Nag_NormType norm;
Nag_SparseNsym_Weight weight;
NagError fail, fail1;
Integer verbose = 0;
INIT_FAIL(fail);
INIT_FAIL(fail1);
printf(
"nag_sparse_complex_gen_precon_jacobi (f11dxc) Example Program Results\n");
/* Skip heading in data file */
scanf("%*[^\n]");
scanf("%" NAG_IFMT "%*[^\n]", &n);
scanf("%" NAG_IFMT "%*[^\n]", &nnz);
lwork = 300;
if (!(a = NAG_ALLOC(nnz, Complex)) || !(b = NAG_ALLOC(n, Complex)) ||
!(diag = NAG_ALLOC(n, Complex)) || !(work = NAG_ALLOC(lwork, Complex)) ||
!(x = NAG_ALLOC(n, Complex)) || !(wgt = NAG_ALLOC(n, double)) ||
!(icol = NAG_ALLOC(nnz, Integer)) || !(irow = NAG_ALLOC(nnz, Integer))) {
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
/* Read or initialize the parameters for the iterative solver */
scanf("%99s%*[^\n]", nag_enum_arg);
/* nag_enum_name_to_value (x04nac).
* Converts NAG enum member name to value
*/
method = (Nag_SparseNsym_Method)nag_enum_name_to_value(nag_enum_arg);
scanf("%99s%*[^\n]", nag_enum_arg);
precon = (Nag_SparseNsym_PrecType)nag_enum_name_to_value(nag_enum_arg);
scanf("%99s%*[^\n]", nag_enum_arg);
norm = (Nag_NormType)nag_enum_name_to_value(nag_enum_arg);
scanf("%99s%*[^\n]", nag_enum_arg);
weight = (Nag_SparseNsym_Weight)nag_enum_name_to_value(nag_enum_arg);
scanf("%" NAG_IFMT "%*[^\n]", &iterm);
scanf("%" NAG_IFMT "%lf%" NAG_IFMT "%*[^\n]", &m, &tol, &maxitn);
scanf("%" NAG_IFMT "%*[^\n]", &monit);
/* Read the parameters for the preconditioner */
scanf("%" NAG_IFMT "%*[^\n]", &niter);
anorm = 0.0;
sigmax = 0.0;
/* Read the nonzero elements of the matrix A */
for (i = 0; i < nnz; i++)
scanf(" ( %lf , %lf ) %" NAG_IFMT "%" NAG_IFMT "%*[^\n]", &a[i].re,
&a[i].im, &irow[i], &icol[i]);
/* Read right-hand side vector b and initial approximate solution */
for (i = 0; i < n; i++)
scanf(" ( %lf , %lf )", &b[i].re, &b[i].im);
scanf("%*[^\n]");
for (i = 0; i < n; i++)
scanf(" ( %lf , %lf )", &x[i].re, &x[i].im);
scanf("%*[^\n]");
/* Call to initialize the solver */
/* nag_sparse_complex_gen_basic_setup (f11brc).
* Complex sparse non-Hermitian linear systems, setup
*/
nag_sparse_complex_gen_basic_setup(method, precon, norm, weight, iterm, n, m,
tol, maxitn, anorm, sigmax, monit, &lwreq,
work, lwork, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_sparse_complex_gen_basic_setup (f11brc).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
/* Call solver repeatedly to solve the equations.
* Note: the arrays b and x are overwritten; on final exit, x will
* contain the solution and b the residual vector.
*/
irevcm = 0;
init = Nag_InitializeI;
while (irevcm != 4) {
/* nag_sparse_complex_gen_basic_solver (f11bsc)
* Complex sparse non-Hermitian linear systems, preconditioned RGMRES, CGS,
* Bi-CGSTAB or TFQMR method
*/
nag_sparse_complex_gen_basic_solver(&irevcm, x, b, wgt, work, lwreq, &fail);
switch (irevcm) {
case -1:
/* nag_sparse_complex_gen_matvec (f11xnc)
* Complex sparse non-Hermitian matrix vector multiply
*/
nag_sparse_complex_gen_matvec(Nag_ConjTrans, n, nnz, a, irow, icol,
Nag_SparseNsym_NoCheck, x, b, &fail1);
break;
case 1:
nag_sparse_complex_gen_matvec(Nag_NoTrans, n, nnz, a, irow, icol,
Nag_SparseNsym_NoCheck, x, b, &fail1);
break;
case 2:
/* nag_sparse_complex_gen_precon_jacobi (f11dxc).
* Complex sparse nonsymmetric linear systems, line Jacobi preconditioner
*/
nag_sparse_complex_gen_precon_jacobi(
Nag_SparseNsym_StoreCS, Nag_NoTrans, init, niter, n, nnz, a, irow,
icol, Nag_SparseNsym_Check, x, b, diag, &fail1);
init = Nag_InputA;
break;
case 3:
/* nag_sparse_complex_gen_basic_diag (f11btc)
* Complex sparse nonhermitian linear systems, diagnostic
*/
nag_sparse_complex_gen_basic_diag(&itn, &stplhs, &stprhs, &anorm, &sigmax,
work, lwreq, &fail1);
if (fail1.code == NE_NOERROR && itn <= 3)
printf("Monitoring at iteration number %2" NAG_IFMT " "
"order of residual norm %3" NAG_IFMT "\n",
itn, (Integer)(log(stplhs) / log(10.0) + 0.5));
}
if (fail1.code != NE_NOERROR)
irevcm = 6;
}
if (fail.code != NE_NOERROR) {
printf("Error from nag_sparse_complex_gen_basic_solver (f11bsc)\n%s\n",
fail.message);
exit_status = 2;
goto END;
}
/* Obtain information about the computation using
* nag_sparse_complex_gen_basic_diag (f11btc).
* Complex sparse Hermitian linear systems, diagnostic.
*/
nag_sparse_complex_gen_basic_diag(&itn, &stplhs, &stprhs, &anorm, &sigmax,
work, lwreq, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_sparse_complex_gen_basic_diag (f11btc)\n%s\n",
fail.message);
exit_status = 3;
goto END;
}
/* Print the output data */
printf("\nFinal Results\n");
if (verbose) {
printf("Number of iterations for convergence: %5" NAG_IFMT " \n", itn);
printf("Residual norm: %11.1e \n", stplhs);
printf("Right-hand side of termination criterion: %11.1e\n", stprhs);
printf("1-norm of matrix A: %11.1e\n", anorm);
}
/* Output x */
printf("\n Solution vector\n");
for (i = 0; i < n; i++)
printf("(%8.3f, %8.3f)\n", x[i].re, x[i].im);
END:
NAG_FREE(a);
NAG_FREE(b);
NAG_FREE(diag);
NAG_FREE(work);
NAG_FREE(x);
NAG_FREE(wgt);
NAG_FREE(icol);
NAG_FREE(irow);
return exit_status;
}