Program f11ddfe
! F11DDF Example Program Text
! Mark 30.0 Release. NAG Copyright 2024.
! .. Use Statements ..
Use nag_library, Only: f11bdf, f11bef, f11bff, f11ddf, f11xaf, nag_wp
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..
Real (Kind=nag_wp) :: anorm, omega, sigmax, stplhs, &
stprhs, tol
Integer :: i, ifail, irevcm, iterm, itn, la, &
liwork, lwneed, lwork, m, maxitn, &
monit, n, nnz
Character (1) :: ckddf, ckxaf, norm, precon, trans, &
weight
Character (8) :: method
! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), b(:), rdiag(:), wgt(:), &
work(:), x(:)
Integer, Allocatable :: icol(:), irow(:), iwork(:)
! .. Intrinsic Procedures ..
Intrinsic :: max
! .. Executable Statements ..
Write (nout,*) 'F11DDF Example Program Results'
Write (nout,*)
! Skip heading in data file
Read (nin,*)
! Read algorithmic parameters
Read (nin,*) n, m
Read (nin,*) nnz
la = 3*nnz
lwork = max(n*(m+3)+m*(m+5)+101,7*n+100,(2*n+m)*(m+2)+n+100,10*n+100)
liwork = 2*n + 1
Allocate (a(la),b(n),rdiag(n),wgt(n),work(lwork),x(n),icol(la),irow(la), &
iwork(liwork))
Read (nin,*) method
Read (nin,*) precon, norm, iterm
Read (nin,*) tol, maxitn
Read (nin,*) anorm, sigmax
Read (nin,*) omega
! Read the matrix A
Do i = 1, nnz
Read (nin,*) a(i), irow(i), icol(i)
End Do
! Read right-hand side vector b and initial approximate solution x
Read (nin,*) b(1:n)
Read (nin,*) x(1:n)
! Call F11BDF to initialize solver
weight = 'N'
monit = 0
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
ifail = 0
Call f11bdf(method,precon,norm,weight,iterm,n,m,tol,maxitn,anorm,sigmax, &
monit,lwneed,work,lwork,ifail)
! Calculate reciprocal diagonal matrix elements if necessary
If (precon=='P' .Or. precon=='p') Then
iwork(1:n) = 0
Do i = 1, nnz
If (irow(i)==icol(i)) Then
iwork(irow(i)) = iwork(irow(i)) + 1
If (a(i)/=0.E0_nag_wp) Then
rdiag(irow(i)) = 1.E0_nag_wp/a(i)
Else
Write (nout,*) 'Matrix has a zero diagonal element'
Go To 100
End If
End If
End Do
Do i = 1, n
If (iwork(i)==0) Then
Write (nout,*) 'Matrix has a missing diagonal element'
Go To 100
End If
If (iwork(i)>=2) Then
Write (nout,*) 'Matrix has a multiple diagonal element'
Go To 100
End If
End Do
End If
! Call F11BEF to solve the linear system
irevcm = 0
ckxaf = 'C'
ckddf = 'C'
loop: Do
ifail = 0
Call f11bef(irevcm,x,b,wgt,work,lwork,ifail)
Select Case (irevcm)
Case (1)
! Compute matrix-vector product
trans = 'N'
Call f11xaf(trans,n,nnz,a,irow,icol,ckxaf,x,b,ifail)
ckxaf = 'N'
Case (-1)
! Compute transposed matrix-vector product
trans = 'T'
Call f11xaf(trans,n,nnz,a,irow,icol,ckxaf,x,b,ifail)
ckxaf = 'N'
Case (2)
! SSOR preconditioning
trans = 'N'
Call f11ddf(trans,n,nnz,a,irow,icol,rdiag,omega,ckddf,x,b,iwork, &
ifail)
ckddf = 'N'
Case (4)
! Termination
ifail = 0
Call f11bff(itn,stplhs,stprhs,anorm,sigmax,work,lwork,ifail)
Write (nout,'(A,I10,A)') ' Converged in', itn, ' iterations'
Write (nout,'(A,1P,E16.3)') ' Matrix norm =', anorm
Write (nout,'(A,1P,E16.3)') ' Final residual norm =', stplhs
Write (nout,*)
! Output x
Write (nout,*) ' X'
Write (nout,'(1X,1P,E16.4)') x(1:n)
Exit loop
Case Default
Exit loop
End Select
End Do loop
100 Continue
End Program f11ddfe