Program f08fpfe
! F08FPF Example Program Text
! Mark 30.0 Release. NAG Copyright 2024.
! .. Use Statements ..
Use nag_library, Only: nag_wp, x04daf, zheevx, zscal
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Real (Kind=nag_wp), Parameter :: zero = 0.0E+0_nag_wp
Integer, Parameter :: nb = 64, nin = 5, nout = 6
! .. Local Scalars ..
Real (Kind=nag_wp) :: abstol, vl, vu
Integer :: i, ifail, il, info, iu, k, lda, ldz, &
lwork, m, n
! .. Local Arrays ..
Complex (Kind=nag_wp), Allocatable :: a(:,:), work(:), z(:,:)
Complex (Kind=nag_wp) :: dummy(1)
Real (Kind=nag_wp), Allocatable :: rwork(:), w(:)
Integer, Allocatable :: iwork(:), jfail(:)
! .. Intrinsic Procedures ..
Intrinsic :: abs, cmplx, conjg, max, maxloc, &
nint, real
! .. Executable Statements ..
Write (nout,*) 'F08FPF Example Program Results'
Write (nout,*)
! Skip heading in data file
Read (nin,*)
Read (nin,*) n
lda = n
ldz = n
m = n
Allocate (a(lda,n),z(ldz,m),rwork(7*n),w(n),iwork(5*n),jfail(n))
! Read the lower and upper bounds of the interval to be searched.
Read (nin,*) vl, vu
! Use routine workspace query to get optimal workspace.
lwork = -1
! The NAG name equivalent of zheevx is f08fpf
Call zheevx('Vectors','Values in range','Upper',n,a,lda,vl,vu,il,iu, &
abstol,m,w,z,ldz,dummy,lwork,rwork,iwork,jfail,info)
! Make sure that there is enough workspace for block size nb.
lwork = max((nb+1)*n,nint(real(dummy(1))))
Allocate (work(lwork))
! Read the upper triangular part of the matrix A.
Read (nin,*)(a(i,i:n),i=1,n)
! Set the absolute error tolerance for eigenvalues. With ABSTOL
! set to zero, the default value is used instead
abstol = zero
! Solve the Hermitian eigenvalue problem
! The NAG name equivalent of zheevx is f08fpf
Call zheevx('Vectors','Values in range','Upper',n,a,lda,vl,vu,il,iu, &
abstol,m,w,z,ldz,work,lwork,rwork,iwork,jfail,info)
If (info>=0) Then
! Print solution
Write (nout,99999) 'Number of eigenvalues found =', m
Write (nout,*)
Write (nout,*) 'Eigenvalues'
Write (nout,99998) w(1:m)
Flush (nout)
! Normalize the eigenvectors so that the element of largest absolute
! value is real.
Do i = 1, m
rwork(1:n) = abs(z(1:n,i))
k = maxloc(rwork(1:n),1)
Call zscal(n,conjg(z(k,i))/cmplx(abs(z(k,i)),kind=nag_wp),z(1,i),1)
End Do
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
ifail = 0
Call x04daf('General',' ',n,m,z,ldz,'Selected eigenvectors',ifail)
If (info>0) Then
Write (nout,99999) 'INFO eigenvectors failed to converge, INFO =', &
info
Write (nout,*) 'Indices of eigenvectors that did not converge'
Write (nout,99997) jfail(1:m)
End If
Else
Write (nout,99999) 'Failure in ZHEEVX. INFO =', info
End If
99999 Format (1X,A,I5)
99998 Format (3X,(8F8.4))
99997 Format (3X,(8I8))
End Program f08fpfe