/* nag_lapacklin_dsyrfs (f07mhc) Example Program.
*
* Copyright 2024 Numerical Algorithms Group.
*
* Mark 30.0, 2024.
*/
#include <nag.h>
#include <stdio.h>
int main(void) {
/* Scalars */
Integer berr_len, ferr_len, i, j, n, nrhs;
Integer pda, pdaf, pdb, pdx;
Integer exit_status = 0;
Nag_UploType uplo;
NagError fail;
Nag_OrderType order;
/* Arrays */
char nag_enum_arg[40];
Integer *ipiv = 0;
double *a = 0, *af = 0, *b = 0, *berr = 0, *ferr = 0, *x = 0;
#ifdef NAG_COLUMN_MAJOR
#define A(I, J) a[(J - 1) * pda + I - 1]
#define AF(I, J) af[(J - 1) * pdaf + I - 1]
#define B(I, J) b[(J - 1) * pdb + I - 1]
#define X(I, J) x[(J - 1) * pdx + I - 1]
order = Nag_ColMajor;
#else
#define A(I, J) a[(I - 1) * pda + J - 1]
#define AF(I, J) af[(I - 1) * pdaf + J - 1]
#define B(I, J) b[(I - 1) * pdb + J - 1]
#define X(I, J) x[(I - 1) * pdx + J - 1]
order = Nag_RowMajor;
#endif
INIT_FAIL(fail);
printf("nag_lapacklin_dsyrfs (f07mhc) Example Program Results\n\n");
/* Skip heading in data file */
scanf("%*[^\n] ");
scanf("%" NAG_IFMT "%" NAG_IFMT "%*[^\n] ", &n, &nrhs);
#ifdef NAG_COLUMN_MAJOR
pda = n;
pdaf = n;
pdb = n;
pdx = n;
#else
pda = n;
pdaf = n;
pdb = nrhs;
pdx = nrhs;
#endif
ferr_len = nrhs;
berr_len = nrhs;
/* Allocate memory */
if (!(ipiv = NAG_ALLOC(n, Integer)) || !(a = NAG_ALLOC(n * n, double)) ||
!(af = NAG_ALLOC(n * n, double)) || !(b = NAG_ALLOC(n * nrhs, double)) ||
!(berr = NAG_ALLOC(berr_len, double)) ||
!(ferr = NAG_ALLOC(ferr_len, double)) ||
!(x = NAG_ALLOC(n * nrhs, double))) {
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
/* Read A and B from data file, and copy A to AF and B to X */
scanf(" %39s%*[^\n] ", nag_enum_arg);
/* nag_enum_name_to_value (x04nac).
* Converts NAG enum member name to value
*/
uplo = (Nag_UploType)nag_enum_name_to_value(nag_enum_arg);
if (uplo == Nag_Upper) {
for (i = 1; i <= n; ++i) {
for (j = i; j <= n; ++j)
scanf("%lf", &A(i, j));
}
scanf("%*[^\n] ");
} else {
for (i = 1; i <= n; ++i) {
for (j = 1; j <= i; ++j)
scanf("%lf", &A(i, j));
}
scanf("%*[^\n] ");
}
for (i = 1; i <= n; ++i) {
for (j = 1; j <= nrhs; ++j)
scanf("%lf", &B(i, j));
}
scanf("%*[^\n] ");
/* Copy A to AF and B to X */
if (uplo == Nag_Upper) {
for (i = 1; i <= n; ++i) {
for (j = i; j <= n; ++j)
AF(i, j) = A(i, j);
}
} else {
for (i = 1; i <= n; ++i) {
for (j = 1; j <= i; ++j)
AF(i, j) = A(i, j);
}
}
for (i = 1; i <= n; ++i) {
for (j = 1; j <= nrhs; ++j)
X(i, j) = B(i, j);
}
/* Factorize A in the array AF */
/* nag_lapacklin_dsytrf (f07mdc).
* Bunch-Kaufman factorization of real symmetric indefinite
* matrix
*/
nag_lapacklin_dsytrf(order, uplo, n, af, pdaf, ipiv, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_lapacklin_dsytrf (f07mdc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
/* Compute solution in the array X */
/* nag_lapacklin_dsytrs (f07mec).
* Solution of real symmetric indefinite system of linear
* equations, multiple right-hand sides, matrix already
* factorized by nag_lapacklin_dsytrf (f07mdc)
*/
nag_lapacklin_dsytrs(order, uplo, n, nrhs, af, pdaf, ipiv, x, pdx, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_lapacklin_dsytrs (f07mec).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
/* Improve solution, and compute backward errors and */
/* estimated bounds on the forward errors */
/* nag_lapacklin_dsyrfs (f07mhc).
* Refined solution with error bounds of real symmetric
* indefinite system of linear equations, multiple
* right-hand sides
*/
nag_lapacklin_dsyrfs(order, uplo, n, nrhs, a, pda, af, pdaf, ipiv, b, pdb, x,
pdx, ferr, berr, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_lapacklin_dsyrfs (f07mhc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
/* Print solution */
/* nag_file_print_matrix_real_gen (x04cac).
* Print real general matrix (easy-to-use)
*/
fflush(stdout);
nag_file_print_matrix_real_gen(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n,
nrhs, x, pdx, "Solution(s)", 0, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_file_print_matrix_real_gen (x04cac).\n%s\n",
fail.message);
exit_status = 1;
goto END;
}
printf("\nBackward errors (machine-dependent)\n");
for (j = 1; j <= nrhs; ++j)
printf("%11.1e%s", berr[j - 1], j % 7 == 0 ? "\n" : " ");
printf("\nEstimated forward error bounds"
"(machine-dependent)\n");
for (j = 1; j <= nrhs; ++j)
printf("%11.1e%s", ferr[j - 1], j % 7 == 0 || j == nrhs ? "\n" : " ");
END:
NAG_FREE(ipiv);
NAG_FREE(a);
NAG_FREE(af);
NAG_FREE(b);
NAG_FREE(berr);
NAG_FREE(ferr);
NAG_FREE(x);
return exit_status;
}