Program f04bjfe
! F04BJF Example Program Text
! Mark 30.0 Release. NAG Copyright 2024.
! .. Use Statements ..
Use nag_library, Only: f04bjf, nag_wp, x04caf, x04ccf
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6
Character (1), Parameter :: uplo = 'U'
! .. Local Scalars ..
Real (Kind=nag_wp) :: errbnd, rcond
Integer :: i, ierr, ifail, j, ldb, n, nrhs
! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ap(:), b(:,:)
Integer, Allocatable :: ipiv(:)
! .. Executable Statements ..
Write (nout,*) 'F04BJF Example Program Results'
Write (nout,*)
Flush (nout)
! Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
ldb = n
Allocate (ap((n*(n+1))/2),b(ldb,nrhs),ipiv(n))
! Read the upper or lower triangular part of the matrix A from
! data file
If (uplo=='U') Then
Read (nin,*)((ap(i+(j*(j-1))/2),j=i,n),i=1,n)
Else If (uplo=='L') Then
Read (nin,*)((ap(i+((2*n-j)*(j-1))/2),j=1,i),i=1,n)
End If
! Read B from data file
Read (nin,*)(b(i,1:nrhs),i=1,n)
! Solve the equations AX = B for X
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
ifail = 1
Call f04bjf(uplo,n,nrhs,ap,ipiv,b,ldb,rcond,errbnd,ifail)
If (ifail==0) Then
! Print solution, estimate of condition number and approximate
! error bound
ierr = 0
Call x04caf('General',' ',n,nrhs,b,ldb,'Solution',ierr)
Write (nout,*)
Write (nout,*) 'Estimate of condition number'
Write (nout,99999) 1.0E0_nag_wp/rcond
Write (nout,*)
Write (nout,*) 'Estimate of error bound for computed solutions'
Write (nout,99999) errbnd
Else If (ifail==n+1) Then
! Matrix A is numerically singular. Print estimate of
! reciprocal of condition number and solution
Write (nout,*)
Write (nout,*) 'Estimate of reciprocal of condition number'
Write (nout,99999) rcond
Write (nout,*)
Flush (nout)
ierr = 0
Call x04caf('General',' ',n,nrhs,b,ldb,'Solution',ierr)
Else If (ifail>0 .And. ifail<=n) Then
! The upper triangular matrix U is exactly singular. Print
! details of factorization
Write (nout,*)
Flush (nout)
ierr = 0
Call x04ccf(uplo,'Non-unit diagonal',n,ap,'Details of factorization', &
ierr)
! Print pivot indices
Write (nout,*)
Write (nout,*) 'Pivot indices'
Write (nout,99998) ipiv(1:n)
Else
Write (nout,99997) ifail
End If
99999 Format (6X,1P,E9.1)
99998 Format ((3X,7I11))
99997 Format (1X,' ** F04BJF returned with IFAIL = ',I5)
End Program f04bjfe