/* nag_interp_dimn_scat_shep_eval (e01znc) Example Program.
*
* Copyright 2024 Numerical Algorithms Group.
*
* Mark 30.0, 2024.
*/
#include <math.h>
#include <nag.h>
static double funct(double *x);
int main(void) {
/* Scalars */
Integer d = 6, exit_status = 0, lseed = 1, subid = 0;
Integer i, j, liq, lrq, lstate, m, n, nq, nw, tmpdsm;
double fun;
/* Arrays */
double *f = 0, *q = 0, *qx = 0, *rq = 0, *x = 0, *xe = 0;
Integer *iq = 0, *state = 0;
Integer seed[] = {1762543};
/* Nag Types */
Nag_BaseRNG genid = Nag_Basic;
NagError fail;
INIT_FAIL(fail);
printf("nag_interp_dimn_scat_shep_eval (e01znc) Example Program Results\n\n");
/* Skip heading in data file */
scanf("%*[^\n] ");
/* Set up state array for generating a random sample of data locations
* using nag_rand_init_repeat (g05kfc).
*
* First get the length of the state array by setting lstate = -1.
*/
lstate = -1;
nag_rand_init_repeat(genid, subid, seed, lseed, state, &lstate, &fail);
if (fail.code == NE_NOERROR) {
/* Allocate arrays */
if (!(state = NAG_ALLOC(lstate, Integer))) {
printf("Allocation failure\n");
exit_status = -1;
goto END;
}
/* Then initialize the generator to a repeatable sequence */
nag_rand_init_repeat(genid, subid, seed, lseed, state, &lstate, &fail);
}
if (fail.code != NE_NOERROR) {
printf("Error from nag_rand_init_repeat (g05kfc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}
/* Input the number of nodes. */
scanf("%" NAG_IFMT "%*[^\n] ", &m);
liq = 2 * m + 1;
lrq = (d + 1) * (d + 2) / 2 * m + 2 * d + 1;
if (!(x = NAG_ALLOC(d * m, double)) || !(f = NAG_ALLOC(m, double)) ||
!(iq = NAG_ALLOC(liq, Integer)) || !(rq = NAG_ALLOC(lrq, double))) {
printf("Allocation failure\n");
exit_status = -2;
goto END;
}
/* Generate d*m pseudorandom numbers in U(0,1) using
* nag_rand_dist_uniform01 (g05sac).
*/
tmpdsm = d * m;
nag_rand_dist_uniform01(tmpdsm, state, x, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_rand_dist_uniform01 (g05sac).\n%s\n", fail.message);
exit_status = 2;
goto END;
}
/* Evaluate f at x */
for (i = 0; i < m; i++)
f[i] = funct(&x[i * d]);
/* Generate the interpolant using nag_interp_dimn_scat_shep (e01zmc):
Interpolating functions, modified Shepard's method, d variables.
*/
nq = 0;
nw = 0;
nag_interp_dimn_scat_shep(d, m, x, f, nw, nq, iq, rq, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_interp_dimn_scat_shep (e01zmc).\n%s\n",
fail.message);
exit_status = 3;
goto END;
}
/* Input the number of evaluation points and allocate arrays with lengths
based on this.
*/
scanf("%" NAG_IFMT "%*[^\n]", &n);
if (!(xe = NAG_ALLOC(d * n, double)) || !(q = NAG_ALLOC(n, double)) ||
!(qx = NAG_ALLOC(d * n, double))) {
printf("Allocation failure\n");
exit_status = -3;
goto END;
}
/* Generate a set of evaluation points lying on diagonal line
* xe(1:d,i) = xe(1,i) = i/(n+1).
*/
for (i = 0; i < n; i++)
for (j = 0; j < d; j++)
xe[i * d + j] = (double)(i + 1) / (double)(n + 1);
/* Evaluate the interpolant using nag_interp_dimn_scat_shep_eval (e01znc), at
given interpolated values, where interpolant previously computed by e01zmc.
*/
nag_interp_dimn_scat_shep_eval(d, m, x, f, iq, rq, n, xe, q, qx, &fail);
if (fail.code != NE_NOERROR) {
printf("Error from nag_interp_dimn_scat_shep_eval (e01znc).\n%s\n",
fail.message);
exit_status = 4;
goto END;
}
/* Print interpolated function values against actual function values
* at the points on the diagonal line. */
/* Header */
printf(" i | f(i) q(i) | |f(i)-q(i)|\n");
printf(" ---|--------------------+---------------\n");
/* Results */
for (i = 0; i < n; i++) {
fun = funct(&xe[i * d]);
printf("%5" NAG_IFMT " %10.4f%10.4f%10.4f\n", i, fun, q[i],
fabs(fun - q[i]));
}
END:
NAG_FREE(f);
NAG_FREE(q);
NAG_FREE(qx);
NAG_FREE(rq);
NAG_FREE(x);
NAG_FREE(xe);
NAG_FREE(iq);
NAG_FREE(state);
return exit_status;
}
static double funct(double *x) {
double funct_return;
funct_return = x[0] * x[1] * x[2] / (1.0 + 2.0 * x[3] * x[4] * x[5]);
return funct_return;
}