NAG Library Manual, Mark 30
Interfaces:  FL   CL   CPP   AD 

NAG AD Library Introduction
Example description

 F07CA_T2W_F Example Program Results

 Solution
     -4.0000     7.0000     3.0000    -4.0000    -3.0000

  Derivatives calculated: Second order tangents
  Computational mode    : algorithmic

  Derivatives of solution w.r.t. input vector d


   Derivatives for solution point i = 1

 d^2(x_i)/d(d_j)d(d_k)
             1          2          3          4          5
 1     -8.7502   -18.4993     1.1786     0.4800    -0.4328
 2    -18.4993   -29.6175     1.8819     0.7681    -0.6909
 3      1.1786     1.8819     0.0192     0.0079    -0.0071
 4      0.4800     0.7681     0.0079    -0.0709     0.0637
 5     -0.4328    -0.6909    -0.0071     0.0637    -0.0053

   Derivatives for solution point i = 2

 d^2(x_i)/d(d_j)d(d_k)
             1          2          3          4          5
 1     16.4844    30.4839    -1.9228    -0.7891     0.7056
 2     30.4839    42.3108    -2.6884    -1.0972     0.9870
 3     -1.9228    -2.6884    -0.0275    -0.0112     0.0101
 4     -0.7891    -1.0972    -0.0112     0.1012    -0.0910
 5      0.7056     0.9870     0.0101    -0.0910     0.0076

   Derivatives for solution point i = 3

 d^2(x_i)/d(d_j)d(d_k)
               1            2            3            4            5
 1    8.1635E+00   1.5096E+01  -4.1534E-01  -1.8290E-01   1.5147E-01
 2    1.5096E+01   2.0953E+01  -5.0236E-01  -2.2235E-01   1.8312E-01
 3   -4.1534E-01  -5.0236E-01   2.1961E-03   8.9986E-04  -8.0600E-04
 4   -1.8290E-01  -2.2235E-01   8.9986E-04  -8.0992E-03   7.2782E-03
 5    1.5147E-01   1.8312E-01  -8.0600E-04   7.2782E-03  -6.1117E-04

   Derivatives for solution point i = 4

 d^2(x_i)/d(d_j)d(d_k)
             1          2          3          4          5
 1     -9.7507   -18.0315     0.4961     1.0139    -0.9383
 2    -18.0315   -25.0272     0.6000     1.4938    -1.3882
 3      0.4961     0.6000    -0.0026     0.0106    -0.0102
 4      1.0139     1.4938     0.0106    -0.2131     0.1915
 5     -0.9383    -1.3882    -0.0102     0.1915    -0.0161

   Derivatives for solution point i = 5

 d^2(x_i)/d(d_j)d(d_k)
               1            2            3            4            5
 1   -8.2400E+00  -1.5238E+01   4.1923E-01   8.5681E-01  -2.3809E-01
 2   -1.5238E+01  -2.1150E+01   5.0707E-01   1.2624E+00  -3.1640E-01
 3    4.1923E-01   5.0707E-01  -2.2167E-03   8.9769E-03  -4.3951E-04
 4    8.5681E-01   1.2624E+00   8.9769E-03  -1.8011E-01   8.4147E-02
 5   -2.3809E-01  -3.1640E-01  -4.3951E-04   8.4147E-02  -1.2746E-03