NAG Library Manual, Mark 30
Interfaces:  FL   CL   CPP   AD 

NAG CPP Interface Introduction
Example description

                                                                                
 ------------------------------------------------------------------------------ 
  E04ST, Interior point method for large-scale nonlinear optimization problems  
 ------------------------------------------------------------------------------ 
                                                                                
 Begin of Options                                                               
     Print File                    =                  50     * U                
     Print Level                   =                   2     * U                
     Monitoring File               =                  51     * U                
     Monitoring Level              =                   5     * U                
 
     Infinite Bound Size           =         1.00000E+20     * d                
     Task                          =            Minimize     * d                
     Stats Time                    =                  No     * d                
     Time Limit                    =         6.00000E+01     * U                
     Verify Derivatives            =                  No     * d                
 
     Hessian Mode                  =                Auto     * d                
     Matrix Ordering               =                Auto     * d                
     Outer Iteration Limit         =                  26     * U                
     Stop Tolerance 1              =         2.50000E-08     * U                
 End of Options                                                                 
                                                                                

List of options:

                                    Name   Value                # times used
                          acceptable_tol = 2.5e-06                   1
                      bound_relax_factor = 1e-08                     2
            check_derivatives_for_naninf = yes                       1
                         derivative_test = none                      1
                   hessian_approximation = exact                     7
              limited_memory_max_history = 6                         0
                              ma97_order = auto                      3
                            ma97_scaling = dynamic                   3
                                  ma97_u = 1e-08                     3
                            max_cpu_time = 60                        1
                                max_iter = 26                        1
                     nag_monitoring_file = 51                        1
                    nag_monitoring_level = 5                         1
                          nag_print_file = 50                        1
                         nag_print_level = 2                         1
                     nlp_lower_bound_inf = -1e+20                    1
                      nlp_scaling_method = gradient-based            1
                     nlp_upper_bound_inf = 1e+20                     1
                      obj_scaling_factor = 1                         1
                 print_timing_statistics = no                        1
                                     tol = 2.5e-08                   3

******************************************************************************
This program contains Ipopt, a library for large-scale nonlinear optimization.
 Ipopt is released as open source code under the Eclipse Public License (EPL).
         For more information visit http://projects.coin-or.org/Ipopt
******************************************************************************

This version is built and supported by Numerical Algorithms Group (NAG) Ltd.  
                 For support email support@nag.co.uk
******************************************************************************

This is Ipopt version 3.12.4, running with linear solver ma97.

Number of nonzeros in equality constraint Jacobian...:        4
Number of nonzeros in inequality constraint Jacobian.:        8
Number of nonzeros in Lagrangian Hessian.............:       10

Scaling parameter for objective function = 1.000000e+00
objective scaling factor = 1
No x scaling provided
No c scaling provided
No d scaling provided
DenseVector "original x_L unscaled" with 4 elements:
original x_L unscaled[    1]= 0.0000000000000000e+00
original x_L unscaled[    2]= 0.0000000000000000e+00
original x_L unscaled[    3]= 0.0000000000000000e+00
original x_L unscaled[    4]= 0.0000000000000000e+00
DenseVector "original x_U unscaled" with 0 elements:
DenseVector "original d_L unscaled" with 2 elements:
original d_L unscaled[    1]= 2.1000000000000000e+01
original d_L unscaled[    2]= 5.0000000000000000e+00
DenseVector "original d_U unscaled" with 0 elements:
DenseVector "modified x_L scaled" with 4 elements:
modified x_L scaled[    1]=-1.0000000000000000e-08
modified x_L scaled[    2]=-1.0000000000000000e-08
modified x_L scaled[    3]=-1.0000000000000000e-08
modified x_L scaled[    4]=-1.0000000000000000e-08
DenseVector "modified x_U scaled" with 0 elements:
DenseVector "modified d_L scaled" with 2 elements:
modified d_L scaled[    1]= 2.0999999790000000e+01
modified d_L scaled[    2]= 4.9999999500000003e+00
DenseVector "modified d_U scaled" with 0 elements:
DenseVector "initial x unscaled" with 4 elements:
initial x unscaled[    1]= 1.0000000000000000e+00
initial x unscaled[    2]= 1.0000000000000000e+00
initial x unscaled[    3]= 1.0000000000000000e+00
initial x unscaled[    4]= 1.0000000000000000e+00
Initial values of x sufficiently inside the bounds.
Initial values of s sufficiently inside the bounds.

CompoundVector "RHS[ 0]" with 4 components:

Component 1:
  DenseVector "RHS[ 0][ 0]" with 4 elements:
  RHS[ 0][ 0][    1]=-2.3550000000000001e+01
  RHS[ 0][ 0][    2]=-2.5750000000000000e+01
  RHS[ 0][ 0][    3]=-3.8000000000000000e+01
  RHS[ 0][ 0][    4]=-3.9500000000000000e+01

Component 2:
  DenseVector "RHS[ 0][ 1]" with 2 elements:
  RHS[ 0][ 1][    1]= 1.0000000000000000e+00
  RHS[ 0][ 1][    2]= 1.0000000000000000e+00

Component 3:
  DenseVector "RHS[ 0][ 2]" with 1 elements:
  Homogeneous vector, all elements have value  0.0000000000000000e+00

Component 4:
  DenseVector "RHS[ 0][ 3]" with 2 elements:
  Homogeneous vector, all elements have value  0.0000000000000000e+00

CompoundSymMatrix "KKT" with 4 rows and columns components:
Component for row 0 and column 0:

  SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms:
  Term 0 with factor  0.0000000000000000e+00 and the following matrix:

    SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements:
    Uninitialized!
  Term 1 with factor  1.0000000000000000e+00 and the following matrix:

    DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements:
      DenseVector "Term: 1" with 4 elements:
      Homogeneous vector, all elements have value  1.0000000000000000e+00
Component for row 1 and column 0:
This component has not been set.
Component for row 1 and column 1:

  DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[1][1]" with 2 elements:
    Homogeneous vector, all elements have value  1.0000000000000000e+00
Component for row 2 and column 0:

  GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements:
  KKT[2][0][    1,    1]= 1.0000000000000000e+00  (0)
  KKT[2][0][    1,    2]= 1.0000000000000000e+00  (1)
  KKT[2][0][    1,    3]= 1.0000000000000000e+00  (2)
  KKT[2][0][    1,    4]= 1.0000000000000000e+00  (3)
Component for row 2 and column 1:
This component has not been set.
Component for row 2 and column 2:

  DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements:
    DenseVector "KKT[2][2]" with 1 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
Component for row 3 and column 0:

  GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements:
  KKT[3][0][    2,    1]= 2.2999999999999998e+00  (0)
  KKT[3][0][    2,    2]= 5.5999999999999996e+00  (1)
  KKT[3][0][    2,    3]= 1.1100000000000000e+01  (2)
  KKT[3][0][    2,    4]= 1.3000000000000000e+00  (3)
  KKT[3][0][    1,    1]= 1.1900871710465619e+01  (4)
  KKT[3][0][    1,    2]= 1.1832734374958813e+01  (5)
  KKT[3][0][    1,    3]= 3.4542393087661402e+01  (6)
  KKT[3][0][    1,    4]= 5.1880501644602440e+01  (7)
Component for row 3 and column 1:

  IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00.
Component for row 3 and column 2:
This component has not been set.
Component for row 3 and column 3:

  DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[3][3]" with 2 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
******* KKT SYSTEM *******
(0) KKT[1][1] =   0.000000000000000e+00
(1) KKT[2][1] =   0.000000000000000e+00
(2) KKT[3][1] =   0.000000000000000e+00
(3) KKT[4][1] =   0.000000000000000e+00
(4) KKT[2][2] =   0.000000000000000e+00
(5) KKT[3][2] =   0.000000000000000e+00
(6) KKT[4][2] =   0.000000000000000e+00
(7) KKT[3][3] =   0.000000000000000e+00
(8) KKT[4][3] =   0.000000000000000e+00
(9) KKT[4][4] =   0.000000000000000e+00
(10) KKT[1][1] =   1.000000000000000e+00
(11) KKT[2][2] =   1.000000000000000e+00
(12) KKT[3][3] =   1.000000000000000e+00
(13) KKT[4][4] =   1.000000000000000e+00
(14) KKT[5][5] =   1.000000000000000e+00
(15) KKT[6][6] =   1.000000000000000e+00
(16) KKT[7][1] =   1.000000000000000e+00
(17) KKT[7][2] =   1.000000000000000e+00
(18) KKT[7][3] =   1.000000000000000e+00
(19) KKT[7][4] =   1.000000000000000e+00
(20) KKT[7][7] =  -0.000000000000000e+00
(21) KKT[9][1] =   2.300000000000000e+00
(22) KKT[9][2] =   5.600000000000000e+00
(23) KKT[9][3] =   1.110000000000000e+01
(24) KKT[9][4] =   1.300000000000000e+00
(25) KKT[8][1] =   1.190087171046562e+01
(26) KKT[8][2] =   1.183273437495881e+01
(27) KKT[8][3] =   3.454239308766140e+01
(28) KKT[8][4] =   5.188050164460244e+01
(29) KKT[8][5] =  -1.000000000000000e+00
(30) KKT[9][6] =  -1.000000000000000e+00
(31) KKT[8][8] =  -0.000000000000000e+00
(32) KKT[9][9] =  -0.000000000000000e+00
HSL_MA97: Make heuristic choice of AMD or MeTiS
HSL_MA97: Used AMD
HSL_MA97: PREDICTED nfactor 45.000000, maxfront 9
Right hand side 0 in TSymLinearSolver:
Trhs[    0,    0] = -2.3550000000000001e+01
Trhs[    0,    1] = -2.5750000000000000e+01
Trhs[    0,    2] = -3.8000000000000000e+01
Trhs[    0,    3] = -3.9500000000000000e+01
Trhs[    0,    4] =  1.0000000000000000e+00
Trhs[    0,    5] =  1.0000000000000000e+00
Trhs[    0,    6] =  0.0000000000000000e+00
Trhs[    0,    7] =  0.0000000000000000e+00
Trhs[    0,    8] =  0.0000000000000000e+00
HSL_MA97: delays 0, nfactor 45.000000, nflops 285.000000, maxfront 9
Ma97SolverInterface::Factorization: ma97_factor_solve took      0.000
Solution 0 in TSymLinearSolver:
Tsol[    0,    0] =  1.1433520952693961e-01
Tsol[    0,    1] = -1.7537673840920132e-01
Tsol[    0,    2] =  1.0739304065987820e-01
Tsol[    0,    3] = -4.6351511777616747e-02
Tsol[    0,    4] =  5.9037524177086054e-01
Tsol[    0,    5] =  4.1266703283417938e-01
Tsol[    0,    6] = -1.7438577687930067e+01
Tsol[    0,    7] = -4.0962475822913946e-01
Tsol[    0,    8] = -5.8733296716582062e-01
Factorization successful.

CompoundVector "SOL[ 0]" with 4 components:

Component 1:
  DenseVector "SOL[ 0][ 0]" with 4 elements:
  SOL[ 0][ 0][    1]= 1.1433520952693961e-01
  SOL[ 0][ 0][    2]=-1.7537673840920132e-01
  SOL[ 0][ 0][    3]= 1.0739304065987820e-01
  SOL[ 0][ 0][    4]=-4.6351511777616747e-02

Component 2:
  DenseVector "SOL[ 0][ 1]" with 2 elements:
  SOL[ 0][ 1][    1]= 5.9037524177086054e-01
  SOL[ 0][ 1][    2]= 4.1266703283417938e-01

Component 3:
  DenseVector "SOL[ 0][ 2]" with 1 elements:
  SOL[ 0][ 2][    1]=-1.7438577687930067e+01

Component 4:
  DenseVector "SOL[ 0][ 3]" with 2 elements:
  SOL[ 0][ 3][    1]=-4.0962475822913946e-01
  SOL[ 0][ 3][    2]=-5.8733296716582062e-01
Least square estimates max(y_c) = 1.743858e+01, max(y_d) = 5.873330e-01
Total number of variables............................:        4
                     variables with only lower bounds:        4
                variables with lower and upper bounds:        0
                     variables with only upper bounds:        0
Total number of equality constraints.................:        1
Total number of inequality constraints...............:        2
        inequality constraints with only lower bounds:        2
   inequality constraints with lower and upper bounds:        0
        inequality constraints with only upper bounds:        0

Convergence Check:
  overall_error =  8.9156501027688250e+01   IpData().tol()   =  2.4999999999999999e-08
  dual_inf      =  5.9037524177086054e-01   dual_inf_tol_    =  1.0000000000000000e+00
  constr_viol   =  3.0000000000000000e+00   constr_viol_tol_ =  1.0000000000000000e-04
  compl_inf     =  8.9156501027688250e+01   compl_inf_tol_   =  1.0000000000000000e-04
obj val update iter = 0
Acceptable Check:
  overall_error =  8.9156501027688250e+01   acceptable_tol_             =  2.5000000000000002e-06
  dual_inf      =  5.9037524177086054e-01   acceptable_dual_inf_tol_    =  1.0000000000000000e+10
  constr_viol   =  3.0000000000000000e+00   acceptable_constr_viol_tol_ =  1.0000000000000000e-02
  compl_inf     =  8.9156501027688250e+01   acceptable_compl_inf_tol_   =  1.0000000000000000e-02
  curr_obj_val_ =  1.3080000000000001e+02   last_obj_val                = -1.0000000000000001e+50
  fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) =  7.6452599388379204e+47 acceptable_obj_change_tol_ =  1.0000000000000000e+20
test iter = 0

**************************************************
*** Update HessianMatrix for Iteration 0:
**************************************************



**************************************************
*** Summary of Iteration: 0:
**************************************************

iter    objective    inf_pr   inf_du lg(mu)  ||d||  lg(rg) alpha_du alpha_pr  ls
   0  1.3080000e+02 3.00e+00 5.90e-01  -1.0 0.00e+00    -  0.00e+00 0.00e+00   0 y

**************************************************
*** Beginning Iteration 0 from the following point:
**************************************************

Current barrier parameter mu = 1.0000000000000001e-01
Current fraction-to-the-boundary parameter tau = 9.8999999999999999e-01

||curr_x||_inf   = 1.0000000000000000e+00
||curr_s||_inf   = 1.1015650081768825e+02
||curr_y_c||_inf = 1.7438577687930067e+01
||curr_y_d||_inf = 5.8733296716582062e-01
||curr_z_L||_inf = 1.0000000000000000e+00
||curr_z_U||_inf = 0.0000000000000000e+00
||curr_v_L||_inf = 1.0000000000000000e+00
||curr_v_U||_inf = 0.0000000000000000e+00

No search direction has been computed yet.
DenseVector "curr_x" with 4 elements:
curr_x[    1]= 1.0000000000000000e+00
curr_x[    2]= 1.0000000000000000e+00
curr_x[    3]= 1.0000000000000000e+00
curr_x[    4]= 1.0000000000000000e+00
DenseVector "curr_s" with 2 elements:
curr_s[    1]= 1.1015650081768825e+02
curr_s[    2]= 2.0300000000000001e+01
DenseVector "curr_y_c" with 1 elements:
curr_y_c[    1]=-1.7438577687930067e+01
DenseVector "curr_y_d" with 2 elements:
curr_y_d[    1]=-4.0962475822913946e-01
curr_y_d[    2]=-5.8733296716582062e-01
DenseVector "curr_slack_x_L" with 4 elements:
curr_slack_x_L[    1]= 1.0000000099999999e+00
curr_slack_x_L[    2]= 1.0000000099999999e+00
curr_slack_x_L[    3]= 1.0000000099999999e+00
curr_slack_x_L[    4]= 1.0000000099999999e+00
DenseVector "curr_slack_x_U" with 0 elements:
DenseVector "curr_z_L" with 4 elements:
Homogeneous vector, all elements have value  1.0000000000000000e+00
DenseVector "curr_z_U" with 0 elements:
Homogeneous vector, all elements have value  1.0000000000000000e+00
DenseVector "curr_slack_s_L" with 2 elements:
curr_slack_s_L[    1]= 8.9156501027688250e+01
curr_slack_s_L[    2]= 1.5300000050000001e+01
DenseVector "curr_slack_s_U" with 0 elements:
DenseVector "curr_v_L" with 2 elements:
Homogeneous vector, all elements have value  1.0000000000000000e+00
DenseVector "curr_v_U" with 0 elements:
Homogeneous vector, all elements have value  1.0000000000000000e+00
DenseVector "curr_grad_lag_x" with 4 elements:
curr_grad_lag_x[    1]=-1.1433520952693854e-01
curr_grad_lag_x[    2]= 1.7537673840920576e-01
curr_grad_lag_x[    3]=-1.0739304065987199e-01
curr_grad_lag_x[    4]= 4.6351511777615428e-02
DenseVector "curr_grad_lag_s" with 2 elements:
curr_grad_lag_s[    1]=-5.9037524177086054e-01
curr_grad_lag_s[    2]=-4.1266703283417938e-01


***Current NLP Values for Iteration 0:

                                   (scaled)                 (unscaled)
Objective...............:   1.3080000000000001e+02    1.3080000000000001e+02
Dual infeasibility......:   5.9037524177086054e-01    5.9037524177086054e-01
Constraint violation....:   3.0000000000000000e+00    3.0000000000000000e+00
Complementarity.........:   8.9156501027688250e+01    8.9156501027688250e+01
Overall NLP error.......:   8.9156501027688250e+01    8.9156501027688250e+01

DenseVector "grad_f" with 4 elements:
grad_f[    1]= 2.4550000000000001e+01
grad_f[    2]= 2.6750000000000000e+01
grad_f[    3]= 3.9000000000000000e+01
grad_f[    4]= 4.0500000000000000e+01
DenseVector "curr_c" with 1 elements:
curr_c[    1]= 3.0000000000000000e+00
DenseVector "curr_d" with 2 elements:
curr_d[    1]= 1.1015650081768825e+02
curr_d[    2]= 2.0300000000000001e+01
DenseVector "curr_d - curr_s" with 2 elements:
curr_d - curr_s[    1]= 0.0000000000000000e+00
curr_d - curr_s[    2]= 0.0000000000000000e+00

GenTMatrix "jac_c" of dimension 1 by 4 with 4 nonzero elements:
jac_c[    1,    1]= 1.0000000000000000e+00  (0)
jac_c[    1,    2]= 1.0000000000000000e+00  (1)
jac_c[    1,    3]= 1.0000000000000000e+00  (2)
jac_c[    1,    4]= 1.0000000000000000e+00  (3)

GenTMatrix "jac_d" of dimension 2 by 4 with 8 nonzero elements:
jac_d[    2,    1]= 2.2999999999999998e+00  (0)
jac_d[    2,    2]= 5.5999999999999996e+00  (1)
jac_d[    2,    3]= 1.1100000000000000e+01  (2)
jac_d[    2,    4]= 1.3000000000000000e+00  (3)
jac_d[    1,    1]= 1.1900871710465619e+01  (4)
jac_d[    1,    2]= 1.1832734374958813e+01  (5)
jac_d[    1,    3]= 3.4542393087661402e+01  (6)
jac_d[    1,    4]= 5.1880501644602440e+01  (7)

SymTMatrix "W" of dimension 4 with 10 nonzero elements:
W[    1,    1]= 4.0078791515727900e-02  (0)
W[    2,    1]=-3.5734258038424687e-04  (1)
W[    3,    1]=-3.8555383673037166e-02  (2)
W[    4,    1]=-1.1660652623064897e-03  (3)
W[    2,    2]= 2.7311182929367437e-02  (4)
W[    3,    2]=-2.6162581778132361e-02  (5)
W[    4,    2]=-7.9125857085083240e-04  (6)
W[    3,    3]= 1.5009060072718036e-01  (7)
W[    4,    3]=-8.5372635276010855e-02  (8)
W[    4,    4]= 8.7329959109168187e-02  (9)



**************************************************
*** Update Barrier Parameter for Iteration 0:
**************************************************

Optimality Error for Barrier Sub-problem = 8.905650e+01
Barrier Parameter: 1.000000e-01

**************************************************
*** Solving the Primal Dual System for Iteration 0:
**************************************************

Solving system with delta_x=0.000000e+00 delta_s=0.000000e+00
                    delta_c=0.000000e+00 delta_d=0.000000e+00

CompoundVector "RHS[ 0]" with 4 components:

Component 1:
  DenseVector "RHS[ 0][ 0]" with 4 elements:
  RHS[ 0][ 0][    1]= 7.8566579147306148e-01
  RHS[ 0][ 0][    2]= 1.0753777394092057e+00
  RHS[ 0][ 0][    3]= 7.9260796034012804e-01
  RHS[ 0][ 0][    4]= 9.4635251277761545e-01

Component 2:
  DenseVector "RHS[ 0][ 1]" with 2 elements:
  RHS[ 0][ 1][    1]= 4.0850413502895422e-01
  RHS[ 0][ 1][    2]= 5.8079801947476173e-01

Component 3:
  DenseVector "RHS[ 0][ 2]" with 1 elements:
  RHS[ 0][ 2][    1]= 3.0000000000000000e+00

Component 4:
  DenseVector "RHS[ 0][ 3]" with 2 elements:
  RHS[ 0][ 3][    1]= 0.0000000000000000e+00
  RHS[ 0][ 3][    2]= 0.0000000000000000e+00

CompoundSymMatrix "KKT" with 4 rows and columns components:
Component for row 0 and column 0:

  SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms:
  Term 0 with factor  1.0000000000000000e+00 and the following matrix:

    SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements:
    Term: 0[    1,    1]= 4.0078791515727900e-02  (0)
    Term: 0[    2,    1]=-3.5734258038424687e-04  (1)
    Term: 0[    3,    1]=-3.8555383673037166e-02  (2)
    Term: 0[    4,    1]=-1.1660652623064897e-03  (3)
    Term: 0[    2,    2]= 2.7311182929367437e-02  (4)
    Term: 0[    3,    2]=-2.6162581778132361e-02  (5)
    Term: 0[    4,    2]=-7.9125857085083240e-04  (6)
    Term: 0[    3,    3]= 1.5009060072718036e-01  (7)
    Term: 0[    4,    3]=-8.5372635276010855e-02  (8)
    Term: 0[    4,    4]= 8.7329959109168187e-02  (9)
  Term 1 with factor  1.0000000000000000e+00 and the following matrix:

    DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements:
      DenseVector "Term: 1" with 4 elements:
      Term: 1[    1]= 9.9999999000000017e-01
      Term: 1[    2]= 9.9999999000000017e-01
      Term: 1[    3]= 9.9999999000000017e-01
      Term: 1[    4]= 9.9999999000000017e-01
Component for row 1 and column 0:
This component has not been set.
Component for row 1 and column 1:

  DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[1][1]" with 2 elements:
    KKT[1][1][    1]= 1.1216232001853035e-02
    KKT[1][1][    2]= 6.5359476910589936e-02
Component for row 2 and column 0:

  GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements:
  KKT[2][0][    1,    1]= 1.0000000000000000e+00  (0)
  KKT[2][0][    1,    2]= 1.0000000000000000e+00  (1)
  KKT[2][0][    1,    3]= 1.0000000000000000e+00  (2)
  KKT[2][0][    1,    4]= 1.0000000000000000e+00  (3)
Component for row 2 and column 1:
This component has not been set.
Component for row 2 and column 2:

  DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements:
    DenseVector "KKT[2][2]" with 1 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
Component for row 3 and column 0:

  GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements:
  KKT[3][0][    2,    1]= 2.2999999999999998e+00  (0)
  KKT[3][0][    2,    2]= 5.5999999999999996e+00  (1)
  KKT[3][0][    2,    3]= 1.1100000000000000e+01  (2)
  KKT[3][0][    2,    4]= 1.3000000000000000e+00  (3)
  KKT[3][0][    1,    1]= 1.1900871710465619e+01  (4)
  KKT[3][0][    1,    2]= 1.1832734374958813e+01  (5)
  KKT[3][0][    1,    3]= 3.4542393087661402e+01  (6)
  KKT[3][0][    1,    4]= 5.1880501644602440e+01  (7)
Component for row 3 and column 1:

  IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00.
Component for row 3 and column 2:
This component has not been set.
Component for row 3 and column 3:

  DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[3][3]" with 2 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
******* KKT SYSTEM *******
(0) KKT[1][1] =   4.007879151572790e-02
(1) KKT[2][1] =  -3.573425803842469e-04
(2) KKT[3][1] =  -3.855538367303717e-02
(3) KKT[4][1] =  -1.166065262306490e-03
(4) KKT[2][2] =   2.731118292936744e-02
(5) KKT[3][2] =  -2.616258177813236e-02
(6) KKT[4][2] =  -7.912585708508324e-04
(7) KKT[3][3] =   1.500906007271804e-01
(8) KKT[4][3] =  -8.537263527601086e-02
(9) KKT[4][4] =   8.732995910916819e-02
(10) KKT[1][1] =   9.999999900000002e-01
(11) KKT[2][2] =   9.999999900000002e-01
(12) KKT[3][3] =   9.999999900000002e-01
(13) KKT[4][4] =   9.999999900000002e-01
(14) KKT[5][5] =   1.121623200185303e-02
(15) KKT[6][6] =   6.535947691058994e-02
(16) KKT[7][1] =   1.000000000000000e+00
(17) KKT[7][2] =   1.000000000000000e+00
(18) KKT[7][3] =   1.000000000000000e+00
(19) KKT[7][4] =   1.000000000000000e+00
(20) KKT[7][7] =  -0.000000000000000e+00
(21) KKT[9][1] =   2.300000000000000e+00
(22) KKT[9][2] =   5.600000000000000e+00
(23) KKT[9][3] =   1.110000000000000e+01
(24) KKT[9][4] =   1.300000000000000e+00
(25) KKT[8][1] =   1.190087171046562e+01
(26) KKT[8][2] =   1.183273437495881e+01
(27) KKT[8][3] =   3.454239308766140e+01
(28) KKT[8][4] =   5.188050164460244e+01
(29) KKT[8][5] =  -1.000000000000000e+00
(30) KKT[9][6] =  -1.000000000000000e+00
(31) KKT[8][8] =  -0.000000000000000e+00
(32) KKT[9][9] =  -0.000000000000000e+00
Right hand side 0 in TSymLinearSolver:
Trhs[    0,    0] =  7.8566579147306148e-01
Trhs[    0,    1] =  1.0753777394092057e+00
Trhs[    0,    2] =  7.9260796034012804e-01
Trhs[    0,    3] =  9.4635251277761545e-01
Trhs[    0,    4] =  4.0850413502895422e-01
Trhs[    0,    5] =  5.8079801947476173e-01
Trhs[    0,    6] =  3.0000000000000000e+00
Trhs[    0,    7] =  0.0000000000000000e+00
Trhs[    0,    8] =  0.0000000000000000e+00
HSL_MA97: delays 0, nfactor 45.000000, nflops 285.000000, maxfront 9
Ma97SolverInterface::Factorization: ma97_factor_solve took      0.000
Solution 0 in TSymLinearSolver:
Tsol[    0,    0] =  1.4834722739123620e+00
Tsol[    0,    1] =  1.4602809304393991e+00
Tsol[    0,    2] = -1.2402495971439942e-01
Tsol[    0,    3] =  1.8027175536263826e-01
Tsol[    0,    4] =  4.0002199770001418e+01
Tsol[    0,    5] =  1.0447235669600664e+01
Tsol[    0,    6] = -1.4740319268725783e+00
Tsol[    0,    7] =  4.0169818175853800e-02
Tsol[    0,    8] =  1.0202783905199447e-01
Factorization successful.

CompoundVector "SOL[ 0]" with 4 components:

Component 1:
  DenseVector "SOL[ 0][ 0]" with 4 elements:
  SOL[ 0][ 0][    1]= 1.4834722739123620e+00
  SOL[ 0][ 0][    2]= 1.4602809304393991e+00
  SOL[ 0][ 0][    3]=-1.2402495971439942e-01
  SOL[ 0][ 0][    4]= 1.8027175536263826e-01

Component 2:
  DenseVector "SOL[ 0][ 1]" with 2 elements:
  SOL[ 0][ 1][    1]= 4.0002199770001418e+01
  SOL[ 0][ 1][    2]= 1.0447235669600664e+01

Component 3:
  DenseVector "SOL[ 0][ 2]" with 1 elements:
  SOL[ 0][ 2][    1]=-1.4740319268725783e+00

Component 4:
  DenseVector "SOL[ 0][ 3]" with 2 elements:
  SOL[ 0][ 3][    1]= 4.0169818175853800e-02
  SOL[ 0][ 3][    2]= 1.0202783905199447e-01
Number of trial factorizations performed: 1
Perturbation parameters: delta_x=0.000000e+00 delta_s=0.000000e+00
                         delta_c=0.000000e+00 delta_d=0.000000e+00

CompoundVector "resid" with 8 components:

Component 1:
  DenseVector "resid[ 0]" with 4 elements:
  resid[ 0][    1]=-1.4155343563970746e-15
  resid[ 0][    2]=-9.1593399531575415e-16
  resid[ 0][    3]=-9.7144514654701197e-16
  resid[ 0][    4]=-3.6359804056473877e-15

Component 2:
  DenseVector "resid[ 1]" with 2 elements:
  resid[ 1][    1]= 0.0000000000000000e+00
  resid[ 1][    2]= 1.1102230246251565e-16

Component 3:
  DenseVector "resid[ 2]" with 1 elements:
  resid[ 2][    1]= 0.0000000000000000e+00

Component 4:
  DenseVector "resid[ 3]" with 2 elements:
  resid[ 3][    1]= 7.1054273576010019e-15
  resid[ 3][    2]=-1.7763568394002505e-15

Component 5:
  DenseVector "resid[ 4]" with 4 elements:
  resid[ 4][    1]= 0.0000000000000000e+00
  resid[ 4][    2]= 0.0000000000000000e+00
  resid[ 4][    3]= 0.0000000000000000e+00
  resid[ 4][    4]= 0.0000000000000000e+00

Component 6:
  DenseVector "resid[ 5]" with 0 elements:

Component 7:
  DenseVector "resid[ 6]" with 2 elements:
  resid[ 6][    1]= 7.1054273576010019e-15
  resid[ 6][    2]= 0.0000000000000000e+00

Component 8:
  DenseVector "resid[ 7]" with 0 elements:
max-norm resid_x  3.635980e-15
max-norm resid_s  1.110223e-16
max-norm resid_c  0.000000e+00
max-norm resid_d  7.105427e-15
max-norm resid_zL 0.000000e+00
max-norm resid_zU 0.000000e+00
max-norm resid_vL 7.105427e-15
max-norm resid_vU 0.000000e+00
nrm_rhs = 8.91e+01 nrm_sol = 4.00e+01 nrm_resid = 7.11e-15
residual_ratio = 5.505578e-17

CompoundVector "RHS[ 0]" with 4 components:

Component 1:
  DenseVector "RHS[ 0][ 0]" with 4 elements:
  RHS[ 0][ 0][    1]=-1.4155343563970746e-15
  RHS[ 0][ 0][    2]=-9.1593399531575415e-16
  RHS[ 0][ 0][    3]=-9.7144514654701197e-16
  RHS[ 0][ 0][    4]=-3.6359804056473877e-15

Component 2:
  DenseVector "RHS[ 0][ 1]" with 2 elements:
  RHS[ 0][ 1][    1]= 7.9696121715166404e-17
  RHS[ 0][ 1][    2]= 1.1102230246251565e-16

Component 3:
  DenseVector "RHS[ 0][ 2]" with 1 elements:
  RHS[ 0][ 2][    1]= 0.0000000000000000e+00

Component 4:
  DenseVector "RHS[ 0][ 3]" with 2 elements:
  RHS[ 0][ 3][    1]= 7.1054273576010019e-15
  RHS[ 0][ 3][    2]=-1.7763568394002505e-15

CompoundSymMatrix "KKT" with 4 rows and columns components:
Component for row 0 and column 0:

  SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms:
  Term 0 with factor  1.0000000000000000e+00 and the following matrix:

    SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements:
    Term: 0[    1,    1]= 4.0078791515727900e-02  (0)
    Term: 0[    2,    1]=-3.5734258038424687e-04  (1)
    Term: 0[    3,    1]=-3.8555383673037166e-02  (2)
    Term: 0[    4,    1]=-1.1660652623064897e-03  (3)
    Term: 0[    2,    2]= 2.7311182929367437e-02  (4)
    Term: 0[    3,    2]=-2.6162581778132361e-02  (5)
    Term: 0[    4,    2]=-7.9125857085083240e-04  (6)
    Term: 0[    3,    3]= 1.5009060072718036e-01  (7)
    Term: 0[    4,    3]=-8.5372635276010855e-02  (8)
    Term: 0[    4,    4]= 8.7329959109168187e-02  (9)
  Term 1 with factor  1.0000000000000000e+00 and the following matrix:

    DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements:
      DenseVector "Term: 1" with 4 elements:
      Term: 1[    1]= 9.9999999000000017e-01
      Term: 1[    2]= 9.9999999000000017e-01
      Term: 1[    3]= 9.9999999000000017e-01
      Term: 1[    4]= 9.9999999000000017e-01
Component for row 1 and column 0:
This component has not been set.
Component for row 1 and column 1:

  DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[1][1]" with 2 elements:
    KKT[1][1][    1]= 1.1216232001853035e-02
    KKT[1][1][    2]= 6.5359476910589936e-02
Component for row 2 and column 0:

  GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements:
  KKT[2][0][    1,    1]= 1.0000000000000000e+00  (0)
  KKT[2][0][    1,    2]= 1.0000000000000000e+00  (1)
  KKT[2][0][    1,    3]= 1.0000000000000000e+00  (2)
  KKT[2][0][    1,    4]= 1.0000000000000000e+00  (3)
Component for row 2 and column 1:
This component has not been set.
Component for row 2 and column 2:

  DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements:
    DenseVector "KKT[2][2]" with 1 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
Component for row 3 and column 0:

  GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements:
  KKT[3][0][    2,    1]= 2.2999999999999998e+00  (0)
  KKT[3][0][    2,    2]= 5.5999999999999996e+00  (1)
  KKT[3][0][    2,    3]= 1.1100000000000000e+01  (2)
  KKT[3][0][    2,    4]= 1.3000000000000000e+00  (3)
  KKT[3][0][    1,    1]= 1.1900871710465619e+01  (4)
  KKT[3][0][    1,    2]= 1.1832734374958813e+01  (5)
  KKT[3][0][    1,    3]= 3.4542393087661402e+01  (6)
  KKT[3][0][    1,    4]= 5.1880501644602440e+01  (7)
Component for row 3 and column 1:

  IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00.
Component for row 3 and column 2:
This component has not been set.
Component for row 3 and column 3:

  DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[3][3]" with 2 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
******* KKT SYSTEM *******
(0) KKT[1][1] =   4.007879151572790e-02
(1) KKT[2][1] =  -3.573425803842469e-04
(2) KKT[3][1] =  -3.855538367303717e-02
(3) KKT[4][1] =  -1.166065262306490e-03
(4) KKT[2][2] =   2.731118292936744e-02
(5) KKT[3][2] =  -2.616258177813236e-02
(6) KKT[4][2] =  -7.912585708508324e-04
(7) KKT[3][3] =   1.500906007271804e-01
(8) KKT[4][3] =  -8.537263527601086e-02
(9) KKT[4][4] =   8.732995910916819e-02
(10) KKT[1][1] =   9.999999900000002e-01
(11) KKT[2][2] =   9.999999900000002e-01
(12) KKT[3][3] =   9.999999900000002e-01
(13) KKT[4][4] =   9.999999900000002e-01
(14) KKT[5][5] =   1.121623200185303e-02
(15) KKT[6][6] =   6.535947691058994e-02
(16) KKT[7][1] =   1.000000000000000e+00
(17) KKT[7][2] =   1.000000000000000e+00
(18) KKT[7][3] =   1.000000000000000e+00
(19) KKT[7][4] =   1.000000000000000e+00
(20) KKT[7][7] =  -0.000000000000000e+00
(21) KKT[9][1] =   2.300000000000000e+00
(22) KKT[9][2] =   5.600000000000000e+00
(23) KKT[9][3] =   1.110000000000000e+01
(24) KKT[9][4] =   1.300000000000000e+00
(25) KKT[8][1] =   1.190087171046562e+01
(26) KKT[8][2] =   1.183273437495881e+01
(27) KKT[8][3] =   3.454239308766140e+01
(28) KKT[8][4] =   5.188050164460244e+01
(29) KKT[8][5] =  -1.000000000000000e+00
(30) KKT[9][6] =  -1.000000000000000e+00
(31) KKT[8][8] =  -0.000000000000000e+00
(32) KKT[9][9] =  -0.000000000000000e+00
Right hand side 0 in TSymLinearSolver:
Trhs[    0,    0] = -1.4155343563970746e-15
Trhs[    0,    1] = -9.1593399531575415e-16
Trhs[    0,    2] = -9.7144514654701197e-16
Trhs[    0,    3] = -3.6359804056473877e-15
Trhs[    0,    4] =  7.9696121715166404e-17
Trhs[    0,    5] =  1.1102230246251565e-16
Trhs[    0,    6] =  0.0000000000000000e+00
Trhs[    0,    7] =  7.1054273576010019e-15
Trhs[    0,    8] = -1.7763568394002505e-15
Solution 0 in TSymLinearSolver:
Tsol[    0,    0] = -1.9460664887003072e-16
Tsol[    0,    1] = -1.5845427766809172e-16
Tsol[    0,    2] =  2.9543619982040844e-16
Tsol[    0,    3] =  5.7624726717714016e-17
Tsol[    0,    4] =  1.8983095777401935e-15
Tsol[    0,    5] =  3.7956715547974277e-15
Tsol[    0,    6] = -8.2190535319189908e-16
Tsol[    0,    7] = -5.8404241079892719e-17
Tsol[    0,    8] =  1.3706080488344987e-16
Factorization successful.

CompoundVector "SOL[ 0]" with 4 components:

Component 1:
  DenseVector "SOL[ 0][ 0]" with 4 elements:
  SOL[ 0][ 0][    1]=-1.9460664887003072e-16
  SOL[ 0][ 0][    2]=-1.5845427766809172e-16
  SOL[ 0][ 0][    3]= 2.9543619982040844e-16
  SOL[ 0][ 0][    4]= 5.7624726717714016e-17

Component 2:
  DenseVector "SOL[ 0][ 1]" with 2 elements:
  SOL[ 0][ 1][    1]= 1.8983095777401935e-15
  SOL[ 0][ 1][    2]= 3.7956715547974277e-15

Component 3:
  DenseVector "SOL[ 0][ 2]" with 1 elements:
  SOL[ 0][ 2][    1]=-8.2190535319189908e-16

Component 4:
  DenseVector "SOL[ 0][ 3]" with 2 elements:
  SOL[ 0][ 3][    1]=-5.8404241079892719e-17
  SOL[ 0][ 3][    2]= 1.3706080488344987e-16

CompoundVector "resid" with 8 components:

Component 1:
  DenseVector "resid[ 0]" with 4 elements:
  resid[ 0][    1]= 1.3877787807814457e-16
  resid[ 0][    2]=-2.7755575615628914e-17
  resid[ 0][    3]=-8.3266726846886741e-17
  resid[ 0][    4]=-4.1633363423443370e-16

Component 2:
  DenseVector "resid[ 1]" with 2 elements:
  resid[ 1][    1]= 0.0000000000000000e+00
  resid[ 1][    2]= 0.0000000000000000e+00

Component 3:
  DenseVector "resid[ 2]" with 1 elements:
  resid[ 2][    1]=-4.4408920985006262e-16

Component 4:
  DenseVector "resid[ 3]" with 2 elements:
  resid[ 3][    1]=-7.1054273576010019e-15
  resid[ 3][    2]= 1.7763568394002505e-15

Component 5:
  DenseVector "resid[ 4]" with 4 elements:
  resid[ 4][    1]= 0.0000000000000000e+00
  resid[ 4][    2]= 1.1102230246251565e-16
  resid[ 4][    3]=-2.2204460492503131e-16
  resid[ 4][    4]= 0.0000000000000000e+00

Component 6:
  DenseVector "resid[ 5]" with 0 elements:

Component 7:
  DenseVector "resid[ 6]" with 2 elements:
  resid[ 6][    1]=-7.1054273576010019e-15
  resid[ 6][    2]= 0.0000000000000000e+00

Component 8:
  DenseVector "resid[ 7]" with 0 elements:
max-norm resid_x  4.163336e-16
max-norm resid_s  0.000000e+00
max-norm resid_c  4.440892e-16
max-norm resid_d  7.105427e-15
max-norm resid_zL 2.220446e-16
max-norm resid_zU 0.000000e+00
max-norm resid_vL 7.105427e-15
max-norm resid_vU 0.000000e+00
nrm_rhs = 8.91e+01 nrm_sol = 4.00e+01 nrm_resid = 7.11e-15
residual_ratio = 5.505578e-17
*** Step Calculated for Iteration: 0

CompoundVector "delta" with 8 components:

Component 1:
  DenseVector "delta[ 0]" with 4 elements:
  delta[ 0][    1]=-1.4834722739123622e+00
  delta[ 0][    2]=-1.4602809304393993e+00
  delta[ 0][    3]= 1.2402495971439971e-01
  delta[ 0][    4]=-1.8027175536263820e-01

Component 2:
  DenseVector "delta[ 1]" with 2 elements:
  delta[ 1][    1]=-4.0002199770001418e+01
  delta[ 1][    2]=-1.0447235669600660e+01

Component 3:
  DenseVector "delta[ 2]" with 1 elements:
  delta[ 2][    1]= 1.4740319268725774e+00

Component 4:
  DenseVector "delta[ 3]" with 2 elements:
  delta[ 3][    1]=-4.0169818175853855e-02
  delta[ 3][    2]=-1.0202783905199433e-01

Component 5:
  DenseVector "delta[ 4]" with 4 elements:
  delta[ 4][    1]= 5.8347225807763969e-01
  delta[ 4][    2]= 5.6028091483659015e-01
  delta[ 4][    3]=-1.0240249594741500e+00
  delta[ 4][    4]=-7.1972824744007935e-01

Component 6:
  DenseVector "delta[ 5]" with 0 elements:

Component 7:
  DenseVector "delta[ 6]" with 2 elements:
  delta[ 6][    1]=-5.5020442359500665e-01
  delta[ 6][    2]=-3.1063819378218505e-01

Component 8:
  DenseVector "delta[ 7]" with 0 elements:

**************************************************
*** Finding Acceptable Trial Point for Iteration 0:
**************************************************

--> Starting line search in iteration 0 <--
Mu has changed in line search - resetting watchdog counters.
Acceptable Check:
  overall_error =  8.9156501027688250e+01   acceptable_tol_             =  2.5000000000000002e-06
  dual_inf      =  5.9037524177086054e-01   acceptable_dual_inf_tol_    =  1.0000000000000000e+10
  constr_viol   =  3.0000000000000000e+00   acceptable_constr_viol_tol_ =  1.0000000000000000e-02
  compl_inf     =  8.9156501027688250e+01   acceptable_compl_inf_tol_   =  1.0000000000000000e-02
  curr_obj_val_ =  1.3080000000000001e+02   last_obj_val                = -1.0000000000000001e+50
  fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) =  7.6452599388379204e+47 acceptable_obj_change_tol_ =  1.0000000000000000e+20
test iter = 0
The current filter has 0 entries.
Relative step size for delta_x = 7.417361e-01
minimal step size ALPHA_MIN = 1.934668E-11
Starting checks for alpha (primal) = 6.67e-01
trial_max is initialized to 3.000000e+04
trial_min is initialized to 3.000000e-04
Checking acceptability for trial step size alpha_primal_test= 6.673532e-01:
  New values of barrier function     =  7.8989662078651492e+01  (reference  1.3007828384293424e+02):
  New values of constraint violation =  1.0884783964214879e+00  (reference  3.0000000000000000e+00):
reference_theta = 3.000000e+00 reference_gradBarrTDelta = -7.753270e+01
Checking sufficient reduction...
Succeeded...
Checking filter acceptability...
Succeeded...
reference_theta = 3.000000e+00 reference_gradBarrTDelta = -7.753270e+01
Convergence Check:
  overall_error =  2.9236515515232938e+01   IpData().tol()   =  2.4999999999999999e-08
  dual_inf      =  2.3566895846196956e-01   dual_inf_tol_    =  1.0000000000000000e+00
  constr_viol   =  9.9794031750440659e-01   constr_viol_tol_ =  1.0000000000000000e-04
  compl_inf     =  2.9236515515232938e+01   compl_inf_tol_   =  1.0000000000000000e-04
obj val update iter = 1
Acceptable Check:
  overall_error =  2.9236515515232938e+01   acceptable_tol_             =  2.5000000000000002e-06
  dual_inf      =  2.3566895846196956e-01   acceptable_dual_inf_tol_    =  1.0000000000000000e+10
  constr_viol   =  9.9794031750440659e-01   acceptable_constr_viol_tol_ =  1.0000000000000000e-02
  compl_inf     =  2.9236515515232938e+01   acceptable_compl_inf_tol_   =  1.0000000000000000e-02
  curr_obj_val_ =  7.8782624220870048e+01   last_obj_val                =  1.3080000000000001e+02
  fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) =  6.6026457348383438e-01 acceptable_obj_change_tol_ =  1.0000000000000000e+20
test iter = 1

**************************************************
*** Update HessianMatrix for Iteration 1:
**************************************************



**************************************************
*** Summary of Iteration: 1:
**************************************************

iter    objective    inf_pr   inf_du lg(mu)  ||d||  lg(rg) alpha_du alpha_pr  ls
   1  7.8782624e+01 9.98e-01 2.36e-01  -1.0 4.00e+01    -  9.67e-01 6.67e-01f  1 

**************************************************
*** Beginning Iteration 1 from the following point:
**************************************************

Current barrier parameter mu = 1.0000000000000001e-01
Current fraction-to-the-boundary parameter tau = 9.8999999999999999e-01

||curr_x||_inf   = 1.0827684571557799e+00
||curr_s||_inf   = 8.3460903694136817e+01
||curr_y_c||_inf = 1.6454877724095773e+01
||curr_y_d||_inf = 6.5542157485186969e-01
||curr_z_L||_inf = 1.5640854064665453e+00
||curr_z_U||_inf = 0.0000000000000000e+00
||curr_v_L||_inf = 6.9968328506144539e-01
||curr_v_U||_inf = 0.0000000000000000e+00

||delta_x||_inf   = 1.4834722739123622e+00
||delta_s||_inf   = 4.0002199770001418e+01
||delta_y_c||_inf = 1.4740319268725774e+00
||delta_y_d||_inf = 1.0202783905199433e-01
||delta_z_L||_inf = 1.0240249594741500e+00
||delta_z_U||_inf = 0.0000000000000000e+00
||delta_v_L||_inf = 5.5020442359500665e-01
||delta_v_U||_inf = 0.0000000000000000e+00
DenseVector "curr_x" with 4 elements:
curr_x[    1]= 9.9999901000000779e-03
curr_x[    2]= 2.5476808016708929e-02
curr_x[    3]= 1.0827684571557799e+00
curr_x[    4]= 8.7969506223191773e-01
DenseVector "curr_s" with 2 elements:
curr_s[    1]= 8.3460903694136817e+01
curr_s[    2]= 1.3328003557454222e+01
DenseVector "curr_y_c" with 1 elements:
curr_y_c[    1]=-1.6454877724095773e+01
DenseVector "curr_y_d" with 2 elements:
curr_y_d[    1]=-4.3643221603682469e-01
curr_y_d[    2]=-6.5542157485186969e-01
DenseVector "curr_slack_x_L" with 4 elements:
curr_slack_x_L[    1]= 1.0000000100000078e-02
curr_slack_x_L[    2]= 2.5476818016708931e-02
curr_slack_x_L[    3]= 1.0827684671557798e+00
curr_slack_x_L[    4]= 8.7969507223191779e-01
DenseVector "curr_slack_x_U" with 0 elements:
DenseVector "curr_z_L" with 4 elements:
curr_z_L[    1]= 1.5640854064665453e+00
curr_z_L[    2]= 1.5416646347888421e+00
curr_z_L[    3]= 1.0000000000000009e-02
curr_z_L[    4]= 3.0418593963610774e-01
DenseVector "curr_z_U" with 0 elements:
DenseVector "curr_slack_s_L" with 2 elements:
curr_slack_s_L[    1]= 6.2460903904136813e+01
curr_slack_s_L[    2]= 8.3280036074542210e+00
DenseVector "curr_slack_s_U" with 0 elements:
DenseVector "curr_v_L" with 2 elements:
curr_v_L[    1]= 4.6807704800597016e-01
curr_v_L[    2]= 6.9968328506144539e-01
DenseVector "curr_v_U" with 0 elements:
DenseVector "curr_grad_lag_x" with 4 elements:
curr_grad_lag_x[    1]=-2.1321333754836314e-01
curr_grad_lag_x[    2]=-1.0974464897260927e-01
curr_grad_lag_x[    3]= 2.3566895846196956e-01
curr_grad_lag_x[    4]= 2.2985598118471828e-01
DenseVector "curr_grad_lag_s" with 2 elements:
curr_grad_lag_s[    1]=-3.1644831969145470e-02
curr_grad_lag_s[    2]=-4.4261710209575700e-02

CompoundVector "delta" with 8 components:

Component 1:
  DenseVector "delta[ 0]" with 4 elements:
  delta[ 0][    1]=-1.4834722739123622e+00
  delta[ 0][    2]=-1.4602809304393993e+00
  delta[ 0][    3]= 1.2402495971439971e-01
  delta[ 0][    4]=-1.8027175536263820e-01

Component 2:
  DenseVector "delta[ 1]" with 2 elements:
  delta[ 1][    1]=-4.0002199770001418e+01
  delta[ 1][    2]=-1.0447235669600660e+01

Component 3:
  DenseVector "delta[ 2]" with 1 elements:
  delta[ 2][    1]= 1.4740319268725774e+00

Component 4:
  DenseVector "delta[ 3]" with 2 elements:
  delta[ 3][    1]=-4.0169818175853855e-02
  delta[ 3][    2]=-1.0202783905199433e-01

Component 5:
  DenseVector "delta[ 4]" with 4 elements:
  delta[ 4][    1]= 5.8347225807763969e-01
  delta[ 4][    2]= 5.6028091483659015e-01
  delta[ 4][    3]=-1.0240249594741500e+00
  delta[ 4][    4]=-7.1972824744007935e-01

Component 6:
  DenseVector "delta[ 5]" with 0 elements:

Component 7:
  DenseVector "delta[ 6]" with 2 elements:
  delta[ 6][    1]=-5.5020442359500665e-01
  delta[ 6][    2]=-3.1063819378218505e-01

Component 8:
  DenseVector "delta[ 7]" with 0 elements:


***Current NLP Values for Iteration 1:

                                   (scaled)                 (unscaled)
Objective...............:   7.8782624220870048e+01    7.8782624220870048e+01
Dual infeasibility......:   2.3566895846196956e-01    2.3566895846196956e-01
Constraint violation....:   9.9794031750440659e-01    9.9794031750440659e-01
Complementarity.........:   2.9236515515232938e+01    2.9236515515232938e+01
Overall NLP error.......:   2.9236515515232938e+01    2.9236515515232938e+01

DenseVector "grad_f" with 4 elements:
grad_f[    1]= 2.4550000000000001e+01
grad_f[    2]= 2.6750000000000000e+01
grad_f[    3]= 3.9000000000000000e+01
grad_f[    4]= 4.0500000000000000e+01
DenseVector "curr_c" with 1 elements:
curr_c[    1]= 9.9794031750440659e-01
DenseVector "curr_d" with 2 elements:
curr_d[    1]= 8.3370365615219740e+01
curr_d[    2]= 1.3328003557454219e+01
DenseVector "curr_d - curr_s" with 2 elements:
curr_d - curr_s[    1]=-9.0538078917077769e-02
curr_d - curr_s[    2]=-3.5527136788005009e-15

GenTMatrix "jac_c" of dimension 1 by 4 with 4 nonzero elements:
jac_c[    1,    1]= 1.0000000000000000e+00  (0)
jac_c[    1,    2]= 1.0000000000000000e+00  (1)
jac_c[    1,    3]= 1.0000000000000000e+00  (2)
jac_c[    1,    4]= 1.0000000000000000e+00  (3)

GenTMatrix "jac_d" of dimension 2 by 4 with 8 nonzero elements:
jac_d[    2,    1]= 2.2999999999999998e+00  (0)
jac_d[    2,    2]= 5.5999999999999996e+00  (1)
jac_d[    2,    3]= 1.1100000000000000e+01  (2)
jac_d[    2,    4]= 1.3000000000000000e+00  (3)
jac_d[    1,    1]= 1.1999069712087620e+01  (4)
jac_d[    1,    2]= 1.1898391732106615e+01  (5)
jac_d[    1,    3]= 3.4425217214759435e+01  (6)
jac_d[    1,    4]= 5.1918789390799873e+01  (7)

SymTMatrix "W" of dimension 4 with 10 nonzero elements:
W[    1,    1]= 4.0600755335508484e-02  (0)
W[    2,    1]=-8.0171598605041427e-08  (1)
W[    3,    1]=-3.6763037283151076e-04  (2)
W[    4,    1]=-9.0332862351682204e-06  (3)
W[    2,    2]= 2.7550405418060590e-02  (4)
W[    3,    2]=-6.3555391550212481e-04  (5)
W[    4,    2]=-1.5616610761493973e-05  (6)
W[    3,    3]= 5.8198412238091107e-02  (7)
W[    4,    3]=-7.1610651858095689e-02  (8)
W[    4,    4]= 8.8142183071655555e-02  (9)



**************************************************
*** Update Barrier Parameter for Iteration 1:
**************************************************

Optimality Error for Barrier Sub-problem = 2.913652e+01
Barrier Parameter: 1.000000e-01

**************************************************
*** Solving the Primal Dual System for Iteration 1:
**************************************************

Solving system with delta_x=0.000000e+00 delta_s=0.000000e+00
                    delta_c=0.000000e+00 delta_d=0.000000e+00

CompoundVector "RHS[ 0]" with 4 components:

Component 1:
  DenseVector "RHS[ 0][ 0]" with 4 elements:
  RHS[ 0][ 0][    1]=-8.6491268310817411e+00
  RHS[ 0][ 0][    2]=-2.4932159733760479e+00
  RHS[ 0][ 0][    3]= 1.5331411043595494e-01
  RHS[ 0][ 0][    4]= 4.2036716753249048e-01

Component 2:
  DenseVector "RHS[ 0][ 1]" with 2 elements:
  RHS[ 0][ 1][    1]= 4.3483221455030319e-01
  RHS[ 0][ 1][    2]= 6.4341489513490957e-01

Component 3:
  DenseVector "RHS[ 0][ 2]" with 1 elements:
  RHS[ 0][ 2][    1]= 9.9794031750440659e-01

Component 4:
  DenseVector "RHS[ 0][ 3]" with 2 elements:
  RHS[ 0][ 3][    1]=-9.0538078917077769e-02
  RHS[ 0][ 3][    2]=-3.5527136788005009e-15

CompoundSymMatrix "KKT" with 4 rows and columns components:
Component for row 0 and column 0:

  SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms:
  Term 0 with factor  1.0000000000000000e+00 and the following matrix:

    SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements:
    Term: 0[    1,    1]= 4.0600755335508484e-02  (0)
    Term: 0[    2,    1]=-8.0171598605041427e-08  (1)
    Term: 0[    3,    1]=-3.6763037283151076e-04  (2)
    Term: 0[    4,    1]=-9.0332862351682204e-06  (3)
    Term: 0[    2,    2]= 2.7550405418060590e-02  (4)
    Term: 0[    3,    2]=-6.3555391550212481e-04  (5)
    Term: 0[    4,    2]=-1.5616610761493973e-05  (6)
    Term: 0[    3,    3]= 5.8198412238091107e-02  (7)
    Term: 0[    4,    3]=-7.1610651858095689e-02  (8)
    Term: 0[    4,    4]= 8.8142183071655555e-02  (9)
  Term 1 with factor  1.0000000000000000e+00 and the following matrix:

    DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements:
      DenseVector "Term: 1" with 4 elements:
      Term: 1[    1]= 1.5640853908256793e+02
      Term: 1[    2]= 6.0512448366893530e+01
      Term: 1[    3]= 9.2355848026014695e-03
      Term: 1[    4]= 3.4578565827854713e-01
Component for row 1 and column 0:
This component has not been set.
Component for row 1 and column 1:

  DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[1][1]" with 2 elements:
    KKT[1][1][    1]= 7.4939204966415675e-03
    KKT[1][1][    2]= 8.4015727903284473e-02
Component for row 2 and column 0:

  GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements:
  KKT[2][0][    1,    1]= 1.0000000000000000e+00  (0)
  KKT[2][0][    1,    2]= 1.0000000000000000e+00  (1)
  KKT[2][0][    1,    3]= 1.0000000000000000e+00  (2)
  KKT[2][0][    1,    4]= 1.0000000000000000e+00  (3)
Component for row 2 and column 1:
This component has not been set.
Component for row 2 and column 2:

  DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements:
    DenseVector "KKT[2][2]" with 1 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
Component for row 3 and column 0:

  GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements:
  KKT[3][0][    2,    1]= 2.2999999999999998e+00  (0)
  KKT[3][0][    2,    2]= 5.5999999999999996e+00  (1)
  KKT[3][0][    2,    3]= 1.1100000000000000e+01  (2)
  KKT[3][0][    2,    4]= 1.3000000000000000e+00  (3)
  KKT[3][0][    1,    1]= 1.1999069712087620e+01  (4)
  KKT[3][0][    1,    2]= 1.1898391732106615e+01  (5)
  KKT[3][0][    1,    3]= 3.4425217214759435e+01  (6)
  KKT[3][0][    1,    4]= 5.1918789390799873e+01  (7)
Component for row 3 and column 1:

  IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00.
Component for row 3 and column 2:
This component has not been set.
Component for row 3 and column 3:

  DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[3][3]" with 2 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
******* KKT SYSTEM *******
(0) KKT[1][1] =   4.060075533550848e-02
(1) KKT[2][1] =  -8.017159860504143e-08
(2) KKT[3][1] =  -3.676303728315108e-04
(3) KKT[4][1] =  -9.033286235168220e-06
(4) KKT[2][2] =   2.755040541806059e-02
(5) KKT[3][2] =  -6.355539155021248e-04
(6) KKT[4][2] =  -1.561661076149397e-05
(7) KKT[3][3] =   5.819841223809111e-02
(8) KKT[4][3] =  -7.161065185809569e-02
(9) KKT[4][4] =   8.814218307165556e-02
(10) KKT[1][1] =   1.564085390825679e+02
(11) KKT[2][2] =   6.051244836689353e+01
(12) KKT[3][3] =   9.235584802601469e-03
(13) KKT[4][4] =   3.457856582785471e-01
(14) KKT[5][5] =   7.493920496641568e-03
(15) KKT[6][6] =   8.401572790328447e-02
(16) KKT[7][1] =   1.000000000000000e+00
(17) KKT[7][2] =   1.000000000000000e+00
(18) KKT[7][3] =   1.000000000000000e+00
(19) KKT[7][4] =   1.000000000000000e+00
(20) KKT[7][7] =  -0.000000000000000e+00
(21) KKT[9][1] =   2.300000000000000e+00
(22) KKT[9][2] =   5.600000000000000e+00
(23) KKT[9][3] =   1.110000000000000e+01
(24) KKT[9][4] =   1.300000000000000e+00
(25) KKT[8][1] =   1.199906971208762e+01
(26) KKT[8][2] =   1.189839173210662e+01
(27) KKT[8][3] =   3.442521721475944e+01
(28) KKT[8][4] =   5.191878939079987e+01
(29) KKT[8][5] =  -1.000000000000000e+00
(30) KKT[9][6] =  -1.000000000000000e+00
(31) KKT[8][8] =  -0.000000000000000e+00
(32) KKT[9][9] =  -0.000000000000000e+00
Right hand side 0 in TSymLinearSolver:
Trhs[    0,    0] = -8.6491268310817411e+00
Trhs[    0,    1] = -2.4932159733760479e+00
Trhs[    0,    2] =  1.5331411043595494e-01
Trhs[    0,    3] =  4.2036716753249048e-01
Trhs[    0,    4] =  4.3483221455030319e-01
Trhs[    0,    5] =  6.4341489513490957e-01
Trhs[    0,    6] =  9.9794031750440659e-01
Trhs[    0,    7] = -9.0538078917077769e-02
Trhs[    0,    8] = -3.5527136788005009e-15
HSL_MA97: delays 0, nfactor 45.000000, nflops 285.000000, maxfront 9
Ma97SolverInterface::Factorization: ma97_factor_solve took      0.000
Solution 0 in TSymLinearSolver:
Tsol[    0,    0] = -7.3517438910112004e-02
Tsol[    0,    1] = -8.1448495331724421e-02
Tsol[    0,    2] =  5.3706591213298172e-01
Tsol[    0,    3] =  6.1584033961326146e-01
Tsol[    0,    4] =  4.8701586675493381e+01
Tsol[    0,    5] =  6.1368223828224266e+00
Tsol[    0,    6] =  3.9851461831737822e+00
Tsol[    0,    7] = -6.9866395943857462e-02
Tsol[    0,    8] = -1.2782529562891476e-01
Factorization successful.

CompoundVector "SOL[ 0]" with 4 components:

Component 1:
  DenseVector "SOL[ 0][ 0]" with 4 elements:
  SOL[ 0][ 0][    1]=-7.3517438910112004e-02
  SOL[ 0][ 0][    2]=-8.1448495331724421e-02
  SOL[ 0][ 0][    3]= 5.3706591213298172e-01
  SOL[ 0][ 0][    4]= 6.1584033961326146e-01

Component 2:
  DenseVector "SOL[ 0][ 1]" with 2 elements:
  SOL[ 0][ 1][    1]= 4.8701586675493381e+01
  SOL[ 0][ 1][    2]= 6.1368223828224266e+00

Component 3:
  DenseVector "SOL[ 0][ 2]" with 1 elements:
  SOL[ 0][ 2][    1]= 3.9851461831737822e+00

Component 4:
  DenseVector "SOL[ 0][ 3]" with 2 elements:
  SOL[ 0][ 3][    1]=-6.9866395943857462e-02
  SOL[ 0][ 3][    2]=-1.2782529562891476e-01
Number of trial factorizations performed: 1
Perturbation parameters: delta_x=0.000000e+00 delta_s=0.000000e+00
                         delta_c=0.000000e+00 delta_d=0.000000e+00

CompoundVector "resid" with 8 components:

Component 1:
  DenseVector "resid[ 0]" with 4 elements:
  resid[ 0][    1]= 4.1355807667287081e-15
  resid[ 0][    2]= 8.0491169285323849e-16
  resid[ 0][    3]= 4.4131365228849972e-15
  resid[ 0][    4]= 2.9420910152566648e-15

Component 2:
  DenseVector "resid[ 1]" with 2 elements:
  resid[ 1][    1]=-5.5511151231257827e-17
  resid[ 1][    2]= 1.3877787807814457e-16

Component 3:
  DenseVector "resid[ 2]" with 1 elements:
  resid[ 2][    1]= 2.2204460492503131e-16

Component 4:
  DenseVector "resid[ 3]" with 2 elements:
  resid[ 3][    1]=-7.1054273576010019e-15
  resid[ 3][    2]=-8.8817841970012523e-16

Component 5:
  DenseVector "resid[ 4]" with 4 elements:
  resid[ 4][    1]= 0.0000000000000000e+00
  resid[ 4][    2]= 0.0000000000000000e+00
  resid[ 4][    3]= 0.0000000000000000e+00
  resid[ 4][    4]= 0.0000000000000000e+00

Component 6:
  DenseVector "resid[ 5]" with 0 elements:

Component 7:
  DenseVector "resid[ 6]" with 2 elements:
  resid[ 6][    1]= 0.0000000000000000e+00
  resid[ 6][    2]= 0.0000000000000000e+00

Component 8:
  DenseVector "resid[ 7]" with 0 elements:
max-norm resid_x  4.413137e-15
max-norm resid_s  1.387779e-16
max-norm resid_c  2.220446e-16
max-norm resid_d  7.105427e-15
max-norm resid_zL 0.000000e+00
max-norm resid_zU 0.000000e+00
max-norm resid_vL 0.000000e+00
max-norm resid_vU 0.000000e+00
nrm_rhs = 2.91e+01 nrm_sol = 4.87e+01 nrm_resid = 7.11e-15
residual_ratio = 9.128469e-17

CompoundVector "RHS[ 0]" with 4 components:

Component 1:
  DenseVector "RHS[ 0][ 0]" with 4 elements:
  RHS[ 0][ 0][    1]= 4.1355807667287081e-15
  RHS[ 0][ 0][    2]= 8.0491169285323849e-16
  RHS[ 0][ 0][    3]= 4.4131365228849972e-15
  RHS[ 0][ 0][    4]= 2.9420910152566648e-15

Component 2:
  DenseVector "RHS[ 0][ 1]" with 2 elements:
  RHS[ 0][ 1][    1]=-5.5511151231257827e-17
  RHS[ 0][ 1][    2]= 1.3877787807814457e-16

Component 3:
  DenseVector "RHS[ 0][ 2]" with 1 elements:
  RHS[ 0][ 2][    1]= 2.2204460492503131e-16

Component 4:
  DenseVector "RHS[ 0][ 3]" with 2 elements:
  RHS[ 0][ 3][    1]=-7.1054273576010019e-15
  RHS[ 0][ 3][    2]=-8.8817841970012523e-16

CompoundSymMatrix "KKT" with 4 rows and columns components:
Component for row 0 and column 0:

  SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms:
  Term 0 with factor  1.0000000000000000e+00 and the following matrix:

    SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements:
    Term: 0[    1,    1]= 4.0600755335508484e-02  (0)
    Term: 0[    2,    1]=-8.0171598605041427e-08  (1)
    Term: 0[    3,    1]=-3.6763037283151076e-04  (2)
    Term: 0[    4,    1]=-9.0332862351682204e-06  (3)
    Term: 0[    2,    2]= 2.7550405418060590e-02  (4)
    Term: 0[    3,    2]=-6.3555391550212481e-04  (5)
    Term: 0[    4,    2]=-1.5616610761493973e-05  (6)
    Term: 0[    3,    3]= 5.8198412238091107e-02  (7)
    Term: 0[    4,    3]=-7.1610651858095689e-02  (8)
    Term: 0[    4,    4]= 8.8142183071655555e-02  (9)
  Term 1 with factor  1.0000000000000000e+00 and the following matrix:

    DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements:
      DenseVector "Term: 1" with 4 elements:
      Term: 1[    1]= 1.5640853908256793e+02
      Term: 1[    2]= 6.0512448366893530e+01
      Term: 1[    3]= 9.2355848026014695e-03
      Term: 1[    4]= 3.4578565827854713e-01
Component for row 1 and column 0:
This component has not been set.
Component for row 1 and column 1:

  DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[1][1]" with 2 elements:
    KKT[1][1][    1]= 7.4939204966415675e-03
    KKT[1][1][    2]= 8.4015727903284473e-02
Component for row 2 and column 0:

  GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements:
  KKT[2][0][    1,    1]= 1.0000000000000000e+00  (0)
  KKT[2][0][    1,    2]= 1.0000000000000000e+00  (1)
  KKT[2][0][    1,    3]= 1.0000000000000000e+00  (2)
  KKT[2][0][    1,    4]= 1.0000000000000000e+00  (3)
Component for row 2 and column 1:
This component has not been set.
Component for row 2 and column 2:

  DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements:
    DenseVector "KKT[2][2]" with 1 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
Component for row 3 and column 0:

  GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements:
  KKT[3][0][    2,    1]= 2.2999999999999998e+00  (0)
  KKT[3][0][    2,    2]= 5.5999999999999996e+00  (1)
  KKT[3][0][    2,    3]= 1.1100000000000000e+01  (2)
  KKT[3][0][    2,    4]= 1.3000000000000000e+00  (3)
  KKT[3][0][    1,    1]= 1.1999069712087620e+01  (4)
  KKT[3][0][    1,    2]= 1.1898391732106615e+01  (5)
  KKT[3][0][    1,    3]= 3.4425217214759435e+01  (6)
  KKT[3][0][    1,    4]= 5.1918789390799873e+01  (7)
Component for row 3 and column 1:

  IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00.
Component for row 3 and column 2:
This component has not been set.
Component for row 3 and column 3:

  DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[3][3]" with 2 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
******* KKT SYSTEM *******
(0) KKT[1][1] =   4.060075533550848e-02
(1) KKT[2][1] =  -8.017159860504143e-08
(2) KKT[3][1] =  -3.676303728315108e-04
(3) KKT[4][1] =  -9.033286235168220e-06
(4) KKT[2][2] =   2.755040541806059e-02
(5) KKT[3][2] =  -6.355539155021248e-04
(6) KKT[4][2] =  -1.561661076149397e-05
(7) KKT[3][3] =   5.819841223809111e-02
(8) KKT[4][3] =  -7.161065185809569e-02
(9) KKT[4][4] =   8.814218307165556e-02
(10) KKT[1][1] =   1.564085390825679e+02
(11) KKT[2][2] =   6.051244836689353e+01
(12) KKT[3][3] =   9.235584802601469e-03
(13) KKT[4][4] =   3.457856582785471e-01
(14) KKT[5][5] =   7.493920496641568e-03
(15) KKT[6][6] =   8.401572790328447e-02
(16) KKT[7][1] =   1.000000000000000e+00
(17) KKT[7][2] =   1.000000000000000e+00
(18) KKT[7][3] =   1.000000000000000e+00
(19) KKT[7][4] =   1.000000000000000e+00
(20) KKT[7][7] =  -0.000000000000000e+00
(21) KKT[9][1] =   2.300000000000000e+00
(22) KKT[9][2] =   5.600000000000000e+00
(23) KKT[9][3] =   1.110000000000000e+01
(24) KKT[9][4] =   1.300000000000000e+00
(25) KKT[8][1] =   1.199906971208762e+01
(26) KKT[8][2] =   1.189839173210662e+01
(27) KKT[8][3] =   3.442521721475944e+01
(28) KKT[8][4] =   5.191878939079987e+01
(29) KKT[8][5] =  -1.000000000000000e+00
(30) KKT[9][6] =  -1.000000000000000e+00
(31) KKT[8][8] =  -0.000000000000000e+00
(32) KKT[9][9] =  -0.000000000000000e+00
Right hand side 0 in TSymLinearSolver:
Trhs[    0,    0] =  4.1355807667287081e-15
Trhs[    0,    1] =  8.0491169285323849e-16
Trhs[    0,    2] =  4.4131365228849972e-15
Trhs[    0,    3] =  2.9420910152566648e-15
Trhs[    0,    4] = -5.5511151231257827e-17
Trhs[    0,    5] =  1.3877787807814457e-16
Trhs[    0,    6] =  2.2204460492503131e-16
Trhs[    0,    7] = -7.1054273576010019e-15
Trhs[    0,    8] = -8.8817841970012523e-16
Solution 0 in TSymLinearSolver:
Tsol[    0,    0] =  3.5057641983201705e-17
Tsol[    0,    1] =  1.7075003727992079e-17
Tsol[    0,    2] =  4.5422459519645089e-16
Tsol[    0,    3] = -2.8431263598261352e-16
Tsol[    0,    4] =  8.6048640160812144e-15
Tsol[    0,    5] =  5.7367175970414524e-15
Tsol[    0,    6] = -3.5781771740814518e-15
Tsol[    0,    7] =  1.1999531805218233e-16
Tsol[    0,    8] =  3.4319662661287400e-16
Factorization successful.

CompoundVector "SOL[ 0]" with 4 components:

Component 1:
  DenseVector "SOL[ 0][ 0]" with 4 elements:
  SOL[ 0][ 0][    1]= 3.5057641983201705e-17
  SOL[ 0][ 0][    2]= 1.7075003727992079e-17
  SOL[ 0][ 0][    3]= 4.5422459519645089e-16
  SOL[ 0][ 0][    4]=-2.8431263598261352e-16

Component 2:
  DenseVector "SOL[ 0][ 1]" with 2 elements:
  SOL[ 0][ 1][    1]= 8.6048640160812144e-15
  SOL[ 0][ 1][    2]= 5.7367175970414524e-15

Component 3:
  DenseVector "SOL[ 0][ 2]" with 1 elements:
  SOL[ 0][ 2][    1]=-3.5781771740814518e-15

Component 4:
  DenseVector "SOL[ 0][ 3]" with 2 elements:
  SOL[ 0][ 3][    1]= 1.1999531805218233e-16
  SOL[ 0][ 3][    2]= 3.4319662661287400e-16

CompoundVector "resid" with 8 components:

Component 1:
  DenseVector "resid[ 0]" with 4 elements:
  resid[ 0][    1]= 5.8286708792820718e-16
  resid[ 0][    2]= 3.6082248300317588e-16
  resid[ 0][    3]=-2.7755575615628914e-17
  resid[ 0][    4]=-4.9960036108132044e-16

Component 2:
  DenseVector "resid[ 1]" with 2 elements:
  resid[ 1][    1]= 0.0000000000000000e+00
  resid[ 1][    2]= 0.0000000000000000e+00

Component 3:
  DenseVector "resid[ 2]" with 1 elements:
  resid[ 2][    1]= 0.0000000000000000e+00

Component 4:
  DenseVector "resid[ 3]" with 2 elements:
  resid[ 3][    1]= 0.0000000000000000e+00
  resid[ 3][    2]= 8.8817841970012523e-16

Component 5:
  DenseVector "resid[ 4]" with 4 elements:
  resid[ 4][    1]=-1.3877787807814457e-17
  resid[ 4][    2]=-1.3877787807814457e-17
  resid[ 4][    3]= 0.0000000000000000e+00
  resid[ 4][    4]= 0.0000000000000000e+00

Component 6:
  DenseVector "resid[ 5]" with 0 elements:

Component 7:
  DenseVector "resid[ 6]" with 2 elements:
  resid[ 6][    1]= 8.8817841970012523e-16
  resid[ 6][    2]= 2.2204460492503131e-16

Component 8:
  DenseVector "resid[ 7]" with 0 elements:
max-norm resid_x  5.828671e-16
max-norm resid_s  0.000000e+00
max-norm resid_c  0.000000e+00
max-norm resid_d  8.881784e-16
max-norm resid_zL 1.387779e-17
max-norm resid_zU 0.000000e+00
max-norm resid_vL 8.881784e-16
max-norm resid_vU 0.000000e+00
nrm_rhs = 2.91e+01 nrm_sol = 4.87e+01 nrm_resid = 8.88e-16
residual_ratio = 1.141059e-17
*** Step Calculated for Iteration: 1

CompoundVector "delta" with 8 components:

Component 1:
  DenseVector "delta[ 0]" with 4 elements:
  delta[ 0][    1]= 7.3517438910112046e-02
  delta[ 0][    2]= 8.1448495331724435e-02
  delta[ 0][    3]=-5.3706591213298127e-01
  delta[ 0][    4]=-6.1584033961326179e-01

Component 2:
  DenseVector "delta[ 1]" with 2 elements:
  delta[ 1][    1]=-4.8701586675493374e+01
  delta[ 1][    2]=-6.1368223828224213e+00

Component 3:
  DenseVector "delta[ 2]" with 1 elements:
  delta[ 2][    1]=-3.9851461831737858e+00

Component 4:
  DenseVector "delta[ 3]" with 2 elements:
  delta[ 3][    1]= 6.9866395943857587e-02
  delta[ 3][    2]= 1.2782529562891509e-01

Component 5:
  DenseVector "delta[ 4]" with 4 elements:
  delta[ 4][    1]=-3.0628407234891788e+00
  delta[ 4][    2]=-2.5451755439187052e+00
  delta[ 4][    3]= 8.7315965802105266e-02
  delta[ 4][    4]= 2.2438570879883563e-02

Component 6:
  DenseVector "delta[ 5]" with 0 elements:

Component 7:
  DenseVector "delta[ 6]" with 2 elements:
  delta[ 6][    1]=-1.0151022791300306e-01
  delta[ 6][    2]=-1.7208600583849079e-01

Component 8:
  DenseVector "delta[ 7]" with 0 elements:

**************************************************
*** Finding Acceptable Trial Point for Iteration 1:
**************************************************

--> Starting line search in iteration 1 <--
Acceptable Check:
  overall_error =  2.9236515515232938e+01   acceptable_tol_             =  2.5000000000000002e-06
  dual_inf      =  2.3566895846196956e-01   acceptable_dual_inf_tol_    =  1.0000000000000000e+10
  constr_viol   =  9.9794031750440659e-01   acceptable_constr_viol_tol_ =  1.0000000000000000e-02
  compl_inf     =  2.9236515515232938e+01   acceptable_compl_inf_tol_   =  1.0000000000000000e-02
  curr_obj_val_ =  7.8782624220870048e+01   last_obj_val                =  1.3080000000000001e+02
  fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) =  6.6026457348383438e-01 acceptable_obj_change_tol_ =  1.0000000000000000e+20
test iter = 1
The current filter has 0 entries.
Relative step size for delta_x = 3.276278e-01
minimal step size ALPHA_MIN = 1.274948E-11
Starting checks for alpha (primal) = 1.00e+00
Checking acceptability for trial step size alpha_primal_test= 1.000000e+00:
  New values of barrier function     =  3.7204157752851408e+01  (reference  7.8989662078651492e+01):
  New values of constraint violation =  7.6333501447223284e-03  (reference  1.0884783964214879e+00):
reference_theta = 1.088478e+00 reference_gradBarrTDelta = -4.268716e+01
Checking sufficient reduction...
Succeeded...
Checking filter acceptability...
Succeeded...
reference_theta = 1.088478e+00 reference_gradBarrTDelta = -4.268716e+01
Convergence Check:
  overall_error =  5.7343015345312738e+00   IpData().tol()   =  2.4999999999999999e-08
  dual_inf      =  1.5122408611053844e+00   dual_inf_tol_    =  1.0000000000000000e+00
  constr_viol   =  0.0000000000000000e+00   constr_viol_tol_ =  1.0000000000000000e-04
  compl_inf     =  5.7343015345312738e+00   compl_inf_tol_   =  1.0000000000000000e-04
obj val update iter = 2
Acceptable Check:
  overall_error =  5.7343015345312738e+00   acceptable_tol_             =  2.5000000000000002e-06
  dual_inf      =  1.5122408611053844e+00   acceptable_dual_inf_tol_    =  1.0000000000000000e+10
  constr_viol   =  0.0000000000000000e+00   acceptable_constr_viol_tol_ =  1.0000000000000000e-02
  compl_inf     =  5.7343015345312738e+00   acceptable_compl_inf_tol_   =  1.0000000000000000e-02
  curr_obj_val_ =  3.6879120268713557e+01   last_obj_val                =  7.8782624220870048e+01
  fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) =  1.1362392499287837e+00 acceptable_obj_change_tol_ =  1.0000000000000000e+20
test iter = 2

**************************************************
*** Update HessianMatrix for Iteration 2:
**************************************************



**************************************************
*** Summary of Iteration: 2:
**************************************************

iter    objective    inf_pr   inf_du lg(mu)  ||d||  lg(rg) alpha_du alpha_pr  ls
   2  3.6879120e+01 0.00e+00 1.51e+00  -1.0 4.87e+01    -  5.06e-01 1.00e+00f  1 Nhj 

**************************************************
*** Beginning Iteration 2 from the following point:
**************************************************

Current barrier parameter mu = 1.0000000000000001e-01
Current fraction-to-the-boundary parameter tau = 9.8999999999999999e-01

||curr_x||_inf   = 5.4570254502279858e-01
||curr_s||_inf   = 3.4759317018643443e+01
||curr_y_c||_inf = 2.0440023907269559e+01
||curr_y_d||_inf = 5.2759627922295460e-01
||curr_z_L||_inf = 3.1552994540701768e-01
||curr_z_U||_inf = 0.0000000000000000e+00
||curr_v_L||_inf = 6.1268377632380122e-01
||curr_v_U||_inf = 0.0000000000000000e+00

||delta_x||_inf   = 6.1584033961326179e-01
||delta_s||_inf   = 4.8701586675493374e+01
||delta_y_c||_inf = 3.9851461831737858e+00
||delta_y_d||_inf = 1.2782529562891509e-01
||delta_z_L||_inf = 3.0628407234891788e+00
||delta_z_U||_inf = 0.0000000000000000e+00
||delta_v_L||_inf = 1.7208600583849079e-01
||delta_v_U||_inf = 0.0000000000000000e+00
DenseVector "curr_x" with 4 elements:
curr_x[    1]= 8.3517429010112124e-02
curr_x[    2]= 1.0692530334843336e-01
curr_x[    3]= 5.4570254502279858e-01
curr_x[    4]= 2.6385472261865595e-01
DenseVector "curr_s" with 2 elements:
curr_s[    1]= 3.4759317018643443e+01
curr_s[    2]= 7.1911811746318008e+00
DenseVector "curr_y_c" with 1 elements:
curr_y_c[    1]=-2.0440023907269559e+01
DenseVector "curr_y_d" with 2 elements:
curr_y_d[    1]=-3.6656582009296712e-01
curr_y_d[    2]=-5.2759627922295460e-01
DenseVector "curr_slack_x_L" with 4 elements:
curr_slack_x_L[    1]= 8.3517439010112118e-02
curr_slack_x_L[    2]= 1.0692531334843336e-01
curr_slack_x_L[    3]= 5.4570255502279863e-01
curr_slack_x_L[    4]= 2.6385473261865594e-01
DenseVector "curr_slack_x_U" with 0 elements:
DenseVector "curr_z_L" with 4 elements:
curr_z_L[    1]= 1.5640854064665310e-02
curr_z_L[    2]= 2.5493001105765312e-01
curr_z_L[    3]= 5.4143311321117236e-02
curr_z_L[    4]= 3.1552994540701768e-01
DenseVector "curr_z_U" with 0 elements:
DenseVector "curr_slack_s_L" with 2 elements:
curr_slack_s_L[    1]= 1.3759317228643443e+01
curr_slack_s_L[    2]= 2.1911812246318005e+00
DenseVector "curr_slack_s_U" with 0 elements:
DenseVector "curr_v_L" with 2 elements:
curr_v_L[    1]= 4.1675770964811376e-01
curr_v_L[    2]= 6.1268377632380122e-01
DenseVector "curr_v_U" with 0 elements:
DenseVector "curr_grad_lag_x" with 4 elements:
curr_grad_lag_x[    1]=-1.5122408611053844e+00
curr_grad_lag_x[    2]=-1.2566872909386084e+00
curr_grad_lag_x[    3]= 4.6751419585912148e-02
curr_grad_lag_x[    4]= 2.6270196542249602e-04
DenseVector "curr_grad_lag_s" with 2 elements:
curr_grad_lag_s[    1]=-5.0191889555146640e-02
curr_grad_lag_s[    2]=-8.5087497100846621e-02

CompoundVector "delta" with 8 components:

Component 1:
  DenseVector "delta[ 0]" with 4 elements:
  delta[ 0][    1]= 7.3517438910112046e-02
  delta[ 0][    2]= 8.1448495331724435e-02
  delta[ 0][    3]=-5.3706591213298127e-01
  delta[ 0][    4]=-6.1584033961326179e-01

Component 2:
  DenseVector "delta[ 1]" with 2 elements:
  delta[ 1][    1]=-4.8701586675493374e+01
  delta[ 1][    2]=-6.1368223828224213e+00

Component 3:
  DenseVector "delta[ 2]" with 1 elements:
  delta[ 2][    1]=-3.9851461831737858e+00

Component 4:
  DenseVector "delta[ 3]" with 2 elements:
  delta[ 3][    1]= 6.9866395943857587e-02
  delta[ 3][    2]= 1.2782529562891509e-01

Component 5:
  DenseVector "delta[ 4]" with 4 elements:
  delta[ 4][    1]=-3.0628407234891788e+00
  delta[ 4][    2]=-2.5451755439187052e+00
  delta[ 4][    3]= 8.7315965802105266e-02
  delta[ 4][    4]= 2.2438570879883563e-02

Component 6:
  DenseVector "delta[ 5]" with 0 elements:

Component 7:
  DenseVector "delta[ 6]" with 2 elements:
  delta[ 6][    1]=-1.0151022791300306e-01
  delta[ 6][    2]=-1.7208600583849079e-01

Component 8:
  DenseVector "delta[ 7]" with 0 elements:


***Current NLP Values for Iteration 2:

                                   (scaled)                 (unscaled)
Objective...............:   3.6879120268713557e+01    3.6879120268713557e+01
Dual infeasibility......:   1.5122408611053844e+00    1.5122408611053844e+00
Constraint violation....:   0.0000000000000000e+00    0.0000000000000000e+00
Complementarity.........:   5.7343015345312738e+00    5.7343015345312738e+00
Overall NLP error.......:   5.7343015345312738e+00    5.7343015345312738e+00

DenseVector "grad_f" with 4 elements:
grad_f[    1]= 2.4550000000000001e+01
grad_f[    2]= 2.6750000000000000e+01
grad_f[    3]= 3.9000000000000000e+01
grad_f[    4]= 4.0500000000000000e+01
DenseVector "curr_c" with 1 elements:
curr_c[    1]= 0.0000000000000000e+00
DenseVector "curr_d" with 2 elements:
curr_d[    1]= 3.4751683668498721e+01
curr_d[    2]= 7.1911811746318008e+00
DenseVector "curr_d - curr_s" with 2 elements:
curr_d - curr_s[    1]=-7.6333501447223284e-03
curr_d - curr_s[    2]= 0.0000000000000000e+00

GenTMatrix "jac_c" of dimension 1 by 4 with 4 nonzero elements:
jac_c[    1,    1]= 1.0000000000000000e+00  (0)
jac_c[    1,    2]= 1.0000000000000000e+00  (1)
jac_c[    1,    3]= 1.0000000000000000e+00  (2)
jac_c[    1,    4]= 1.0000000000000000e+00  (3)

GenTMatrix "jac_d" of dimension 2 by 4 with 8 nonzero elements:
jac_d[    2,    1]= 2.2999999999999998e+00  (0)
jac_d[    2,    2]= 5.5999999999999996e+00  (1)
jac_d[    2,    3]= 1.1100000000000000e+01  (2)
jac_d[    2,    4]= 1.3000000000000000e+00  (3)
jac_d[    1,    1]= 1.1984490688314045e+01  (4)
jac_d[    1,    2]= 1.1886526157451877e+01  (5)
jac_d[    1,    3]= 3.4380626811447790e+01  (6)
jac_d[    1,    4]= 5.1991503947462043e+01  (7)

SymTMatrix "W" of dimension 4 with 10 nonzero elements:
W[    1,    1]= 6.8050211560192517e-02  (0)
W[    2,    1]=-1.8774203919451370e-05  (1)
W[    3,    1]=-1.0338017881601843e-02  (2)
W[    4,    1]=-1.5117640031252680e-04  (3)
W[    2,    2]= 4.6175283220970753e-02  (4)
W[    3,    2]=-8.9812383693679432e-03  (5)
W[    4,    2]=-1.3133574565063667e-04  (6)
W[    3,    3]= 3.8309720419374964e-02  (7)
W[    4,    3]=-7.2320045784901130e-02  (8)
W[    4,    4]= 1.4967290192030422e-01  (9)



**************************************************
*** Update Barrier Parameter for Iteration 2:
**************************************************

Optimality Error for Barrier Sub-problem = 5.634302e+00
Barrier Parameter: 1.000000e-01

**************************************************
*** Solving the Primal Dual System for Iteration 2:
**************************************************

Solving system with delta_x=0.000000e+00 delta_s=0.000000e+00
                    delta_c=0.000000e+00 delta_d=0.000000e+00

CompoundVector "RHS[ 0]" with 4 components:

Component 1:
  DenseVector "RHS[ 0][ 0]" with 4 elements:
  RHS[ 0][ 0][    1]=-2.6939537294226183e+00
  RHS[ 0][ 0][    2]=-1.9369885169297625e+00
  RHS[ 0][ 0][    3]=-8.2354281539443686e-02
  RHS[ 0][ 0][    4]=-6.3202776180545886e-02

Component 2:
  DenseVector "RHS[ 0][ 1]" with 2 elements:
  RHS[ 0][ 1][    1]= 3.5929901760405991e-01
  RHS[ 0][ 1][    2]= 4.8195979434682179e-01

Component 3:
  DenseVector "RHS[ 0][ 2]" with 1 elements:
  RHS[ 0][ 2][    1]= 0.0000000000000000e+00

Component 4:
  DenseVector "RHS[ 0][ 3]" with 2 elements:
  RHS[ 0][ 3][    1]=-7.6333501447223284e-03
  RHS[ 0][ 3][    2]= 0.0000000000000000e+00

CompoundSymMatrix "KKT" with 4 rows and columns components:
Component for row 0 and column 0:

  SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms:
  Term 0 with factor  1.0000000000000000e+00 and the following matrix:

    SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements:
    Term: 0[    1,    1]= 6.8050211560192517e-02  (0)
    Term: 0[    2,    1]=-1.8774203919451370e-05  (1)
    Term: 0[    3,    1]=-1.0338017881601843e-02  (2)
    Term: 0[    4,    1]=-1.5117640031252680e-04  (3)
    Term: 0[    2,    2]= 4.6175283220970753e-02  (4)
    Term: 0[    3,    2]=-8.9812383693679432e-03  (5)
    Term: 0[    4,    2]=-1.3133574565063667e-04  (6)
    Term: 0[    3,    3]= 3.8309720419374964e-02  (7)
    Term: 0[    4,    3]=-7.2320045784901130e-02  (8)
    Term: 0[    4,    4]= 1.4967290192030422e-01  (9)
  Term 1 with factor  1.0000000000000000e+00 and the following matrix:

    DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements:
      DenseVector "Term: 1" with 4 elements:
      Term: 1[    1]= 1.8727650476413132e-01
      Term: 1[    2]= 2.3841876453232604e+00
      Term: 1[    3]= 9.9217624734879994e-02
      Term: 1[    4]= 1.1958472083312863e+00
Component for row 1 and column 0:
This component has not been set.
Component for row 1 and column 1:

  DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[1][1]" with 2 elements:
    KKT[1][1][    1]= 3.0289127194518699e-02
    KKT[1][1][    2]= 2.7961346575829427e-01
Component for row 2 and column 0:

  GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements:
  KKT[2][0][    1,    1]= 1.0000000000000000e+00  (0)
  KKT[2][0][    1,    2]= 1.0000000000000000e+00  (1)
  KKT[2][0][    1,    3]= 1.0000000000000000e+00  (2)
  KKT[2][0][    1,    4]= 1.0000000000000000e+00  (3)
Component for row 2 and column 1:
This component has not been set.
Component for row 2 and column 2:

  DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements:
    DenseVector "KKT[2][2]" with 1 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
Component for row 3 and column 0:

  GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements:
  KKT[3][0][    2,    1]= 2.2999999999999998e+00  (0)
  KKT[3][0][    2,    2]= 5.5999999999999996e+00  (1)
  KKT[3][0][    2,    3]= 1.1100000000000000e+01  (2)
  KKT[3][0][    2,    4]= 1.3000000000000000e+00  (3)
  KKT[3][0][    1,    1]= 1.1984490688314045e+01  (4)
  KKT[3][0][    1,    2]= 1.1886526157451877e+01  (5)
  KKT[3][0][    1,    3]= 3.4380626811447790e+01  (6)
  KKT[3][0][    1,    4]= 5.1991503947462043e+01  (7)
Component for row 3 and column 1:

  IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00.
Component for row 3 and column 2:
This component has not been set.
Component for row 3 and column 3:

  DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[3][3]" with 2 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
******* KKT SYSTEM *******
(0) KKT[1][1] =   6.805021156019252e-02
(1) KKT[2][1] =  -1.877420391945137e-05
(2) KKT[3][1] =  -1.033801788160184e-02
(3) KKT[4][1] =  -1.511764003125268e-04
(4) KKT[2][2] =   4.617528322097075e-02
(5) KKT[3][2] =  -8.981238369367943e-03
(6) KKT[4][2] =  -1.313357456506367e-04
(7) KKT[3][3] =   3.830972041937496e-02
(8) KKT[4][3] =  -7.232004578490113e-02
(9) KKT[4][4] =   1.496729019203042e-01
(10) KKT[1][1] =   1.872765047641313e-01
(11) KKT[2][2] =   2.384187645323260e+00
(12) KKT[3][3] =   9.921762473487999e-02
(13) KKT[4][4] =   1.195847208331286e+00
(14) KKT[5][5] =   3.028912719451870e-02
(15) KKT[6][6] =   2.796134657582943e-01
(16) KKT[7][1] =   1.000000000000000e+00
(17) KKT[7][2] =   1.000000000000000e+00
(18) KKT[7][3] =   1.000000000000000e+00
(19) KKT[7][4] =   1.000000000000000e+00
(20) KKT[7][7] =  -0.000000000000000e+00
(21) KKT[9][1] =   2.300000000000000e+00
(22) KKT[9][2] =   5.600000000000000e+00
(23) KKT[9][3] =   1.110000000000000e+01
(24) KKT[9][4] =   1.300000000000000e+00
(25) KKT[8][1] =   1.198449068831404e+01
(26) KKT[8][2] =   1.188652615745188e+01
(27) KKT[8][3] =   3.438062681144779e+01
(28) KKT[8][4] =   5.199150394746204e+01
(29) KKT[8][5] =  -1.000000000000000e+00
(30) KKT[9][6] =  -1.000000000000000e+00
(31) KKT[8][8] =  -0.000000000000000e+00
(32) KKT[9][9] =  -0.000000000000000e+00
Right hand side 0 in TSymLinearSolver:
Trhs[    0,    0] = -2.6939537294226183e+00
Trhs[    0,    1] = -1.9369885169297625e+00
Trhs[    0,    2] = -8.2354281539443686e-02
Trhs[    0,    3] = -6.3202776180545886e-02
Trhs[    0,    4] =  3.5929901760405991e-01
Trhs[    0,    5] =  4.8195979434682179e-01
Trhs[    0,    6] =  0.0000000000000000e+00
Trhs[    0,    7] = -7.6333501447223284e-03
Trhs[    0,    8] =  0.0000000000000000e+00
HSL_MA97: delays 0, nfactor 45.000000, nflops 285.000000, maxfront 9
Ma97SolverInterface::Factorization: ma97_factor_solve took      0.000
Solution 0 in TSymLinearSolver:
Tsol[    0,    0] = -5.3410710546106188e-01
Tsol[    0,    1] =  8.2964316391840348e-02
Tsol[    0,    2] =  2.4091324935222591e-01
Tsol[    0,    3] =  2.1022953971699546e-01
Tsol[    0,    4] =  1.3805687699092424e+01
Tsol[    0,    5] =  2.1835892986756651e+00
Tsol[    0,    6] = -3.5562863484172733e+00
Tsol[    0,    7] =  5.8863213121552682e-02
Tsol[    0,    8] =  1.2860117724860404e-01
Factorization successful.

CompoundVector "SOL[ 0]" with 4 components:

Component 1:
  DenseVector "SOL[ 0][ 0]" with 4 elements:
  SOL[ 0][ 0][    1]=-5.3410710546106188e-01
  SOL[ 0][ 0][    2]= 8.2964316391840348e-02
  SOL[ 0][ 0][    3]= 2.4091324935222591e-01
  SOL[ 0][ 0][    4]= 2.1022953971699546e-01

Component 2:
  DenseVector "SOL[ 0][ 1]" with 2 elements:
  SOL[ 0][ 1][    1]= 1.3805687699092424e+01
  SOL[ 0][ 1][    2]= 2.1835892986756651e+00

Component 3:
  DenseVector "SOL[ 0][ 2]" with 1 elements:
  SOL[ 0][ 2][    1]=-3.5562863484172733e+00

Component 4:
  DenseVector "SOL[ 0][ 3]" with 2 elements:
  SOL[ 0][ 3][    1]= 5.8863213121552682e-02
  SOL[ 0][ 3][    2]= 1.2860117724860404e-01
Number of trial factorizations performed: 1
Perturbation parameters: delta_x=0.000000e+00 delta_s=0.000000e+00
                         delta_c=0.000000e+00 delta_d=0.000000e+00

CompoundVector "resid" with 8 components:

Component 1:
  DenseVector "resid[ 0]" with 4 elements:
  resid[ 0][    1]=-6.6613381477509392e-16
  resid[ 0][    2]= 6.6613381477509392e-16
  resid[ 0][    3]=-6.9388939039072284e-18
  resid[ 0][    4]= 2.9708223728275307e-15

Component 2:
  DenseVector "resid[ 1]" with 2 elements:
  resid[ 1][    1]= 4.8572257327350599e-17
  resid[ 1][    2]=-2.0816681711721685e-17

Component 3:
  DenseVector "resid[ 2]" with 1 elements:
  resid[ 2][    1]=-1.9428902930940239e-16

Component 4:
  DenseVector "resid[ 3]" with 2 elements:
  resid[ 3][    1]= 1.7763568394002505e-15
  resid[ 3][    2]= 4.4408920985006262e-16

Component 5:
  DenseVector "resid[ 4]" with 4 elements:
  resid[ 4][    1]= 0.0000000000000000e+00
  resid[ 4][    2]= 0.0000000000000000e+00
  resid[ 4][    3]= 0.0000000000000000e+00
  resid[ 4][    4]= 0.0000000000000000e+00

Component 6:
  DenseVector "resid[ 5]" with 0 elements:

Component 7:
  DenseVector "resid[ 6]" with 2 elements:
  resid[ 6][    1]= 0.0000000000000000e+00
  resid[ 6][    2]= 0.0000000000000000e+00

Component 8:
  DenseVector "resid[ 7]" with 0 elements:
max-norm resid_x  2.970822e-15
max-norm resid_s  4.857226e-17
max-norm resid_c  1.942890e-16
max-norm resid_d  1.776357e-15
max-norm resid_zL 0.000000e+00
max-norm resid_zU 0.000000e+00
max-norm resid_vL 0.000000e+00
max-norm resid_vU 0.000000e+00
nrm_rhs = 5.63e+00 nrm_sol = 1.38e+01 nrm_resid = 2.97e-15
residual_ratio = 1.528202e-16

CompoundVector "RHS[ 0]" with 4 components:

Component 1:
  DenseVector "RHS[ 0][ 0]" with 4 elements:
  RHS[ 0][ 0][    1]=-6.6613381477509392e-16
  RHS[ 0][ 0][    2]= 6.6613381477509392e-16
  RHS[ 0][ 0][    3]=-6.9388939039072284e-18
  RHS[ 0][ 0][    4]= 2.9708223728275307e-15

Component 2:
  DenseVector "RHS[ 0][ 1]" with 2 elements:
  RHS[ 0][ 1][    1]= 4.8572257327350599e-17
  RHS[ 0][ 1][    2]=-2.0816681711721685e-17

Component 3:
  DenseVector "RHS[ 0][ 2]" with 1 elements:
  RHS[ 0][ 2][    1]=-1.9428902930940239e-16

Component 4:
  DenseVector "RHS[ 0][ 3]" with 2 elements:
  RHS[ 0][ 3][    1]= 1.7763568394002505e-15
  RHS[ 0][ 3][    2]= 4.4408920985006262e-16

CompoundSymMatrix "KKT" with 4 rows and columns components:
Component for row 0 and column 0:

  SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms:
  Term 0 with factor  1.0000000000000000e+00 and the following matrix:

    SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements:
    Term: 0[    1,    1]= 6.8050211560192517e-02  (0)
    Term: 0[    2,    1]=-1.8774203919451370e-05  (1)
    Term: 0[    3,    1]=-1.0338017881601843e-02  (2)
    Term: 0[    4,    1]=-1.5117640031252680e-04  (3)
    Term: 0[    2,    2]= 4.6175283220970753e-02  (4)
    Term: 0[    3,    2]=-8.9812383693679432e-03  (5)
    Term: 0[    4,    2]=-1.3133574565063667e-04  (6)
    Term: 0[    3,    3]= 3.8309720419374964e-02  (7)
    Term: 0[    4,    3]=-7.2320045784901130e-02  (8)
    Term: 0[    4,    4]= 1.4967290192030422e-01  (9)
  Term 1 with factor  1.0000000000000000e+00 and the following matrix:

    DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements:
      DenseVector "Term: 1" with 4 elements:
      Term: 1[    1]= 1.8727650476413132e-01
      Term: 1[    2]= 2.3841876453232604e+00
      Term: 1[    3]= 9.9217624734879994e-02
      Term: 1[    4]= 1.1958472083312863e+00
Component for row 1 and column 0:
This component has not been set.
Component for row 1 and column 1:

  DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[1][1]" with 2 elements:
    KKT[1][1][    1]= 3.0289127194518699e-02
    KKT[1][1][    2]= 2.7961346575829427e-01
Component for row 2 and column 0:

  GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements:
  KKT[2][0][    1,    1]= 1.0000000000000000e+00  (0)
  KKT[2][0][    1,    2]= 1.0000000000000000e+00  (1)
  KKT[2][0][    1,    3]= 1.0000000000000000e+00  (2)
  KKT[2][0][    1,    4]= 1.0000000000000000e+00  (3)
Component for row 2 and column 1:
This component has not been set.
Component for row 2 and column 2:

  DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements:
    DenseVector "KKT[2][2]" with 1 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
Component for row 3 and column 0:

  GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements:
  KKT[3][0][    2,    1]= 2.2999999999999998e+00  (0)
  KKT[3][0][    2,    2]= 5.5999999999999996e+00  (1)
  KKT[3][0][    2,    3]= 1.1100000000000000e+01  (2)
  KKT[3][0][    2,    4]= 1.3000000000000000e+00  (3)
  KKT[3][0][    1,    1]= 1.1984490688314045e+01  (4)
  KKT[3][0][    1,    2]= 1.1886526157451877e+01  (5)
  KKT[3][0][    1,    3]= 3.4380626811447790e+01  (6)
  KKT[3][0][    1,    4]= 5.1991503947462043e+01  (7)
Component for row 3 and column 1:

  IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00.
Component for row 3 and column 2:
This component has not been set.
Component for row 3 and column 3:

  DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[3][3]" with 2 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
******* KKT SYSTEM *******
(0) KKT[1][1] =   6.805021156019252e-02
(1) KKT[2][1] =  -1.877420391945137e-05
(2) KKT[3][1] =  -1.033801788160184e-02
(3) KKT[4][1] =  -1.511764003125268e-04
(4) KKT[2][2] =   4.617528322097075e-02
(5) KKT[3][2] =  -8.981238369367943e-03
(6) KKT[4][2] =  -1.313357456506367e-04
(7) KKT[3][3] =   3.830972041937496e-02
(8) KKT[4][3] =  -7.232004578490113e-02
(9) KKT[4][4] =   1.496729019203042e-01
(10) KKT[1][1] =   1.872765047641313e-01
(11) KKT[2][2] =   2.384187645323260e+00
(12) KKT[3][3] =   9.921762473487999e-02
(13) KKT[4][4] =   1.195847208331286e+00
(14) KKT[5][5] =   3.028912719451870e-02
(15) KKT[6][6] =   2.796134657582943e-01
(16) KKT[7][1] =   1.000000000000000e+00
(17) KKT[7][2] =   1.000000000000000e+00
(18) KKT[7][3] =   1.000000000000000e+00
(19) KKT[7][4] =   1.000000000000000e+00
(20) KKT[7][7] =  -0.000000000000000e+00
(21) KKT[9][1] =   2.300000000000000e+00
(22) KKT[9][2] =   5.600000000000000e+00
(23) KKT[9][3] =   1.110000000000000e+01
(24) KKT[9][4] =   1.300000000000000e+00
(25) KKT[8][1] =   1.198449068831404e+01
(26) KKT[8][2] =   1.188652615745188e+01
(27) KKT[8][3] =   3.438062681144779e+01
(28) KKT[8][4] =   5.199150394746204e+01
(29) KKT[8][5] =  -1.000000000000000e+00
(30) KKT[9][6] =  -1.000000000000000e+00
(31) KKT[8][8] =  -0.000000000000000e+00
(32) KKT[9][9] =  -0.000000000000000e+00
Right hand side 0 in TSymLinearSolver:
Trhs[    0,    0] = -6.6613381477509392e-16
Trhs[    0,    1] =  6.6613381477509392e-16
Trhs[    0,    2] = -6.9388939039072284e-18
Trhs[    0,    3] =  2.9708223728275307e-15
Trhs[    0,    4] =  4.8572257327350599e-17
Trhs[    0,    5] = -2.0816681711721685e-17
Trhs[    0,    6] = -1.9428902930940239e-16
Trhs[    0,    7] =  1.7763568394002505e-15
Trhs[    0,    8] =  4.4408920985006262e-16
Solution 0 in TSymLinearSolver:
Tsol[    0,    0] = -9.5356872250876963e-16
Tsol[    0,    1] =  6.2736794896654720e-16
Tsol[    0,    2] = -1.6189351894858036e-16
Tsol[    0,    3] =  2.9380526318140089e-16
Tsol[    0,    4] =  3.9622100630814147e-15
Tsol[    0,    5] = -5.3910797560098931e-16
Tsol[    0,    6] = -9.8161936903907244e-16
Tsol[    0,    7] =  7.1439627244724329e-17
Tsol[    0,    8] = -1.2992516776400887e-16
Factorization successful.

CompoundVector "SOL[ 0]" with 4 components:

Component 1:
  DenseVector "SOL[ 0][ 0]" with 4 elements:
  SOL[ 0][ 0][    1]=-9.5356872250876963e-16
  SOL[ 0][ 0][    2]= 6.2736794896654720e-16
  SOL[ 0][ 0][    3]=-1.6189351894858036e-16
  SOL[ 0][ 0][    4]= 2.9380526318140089e-16

Component 2:
  DenseVector "SOL[ 0][ 1]" with 2 elements:
  SOL[ 0][ 1][    1]= 3.9622100630814147e-15
  SOL[ 0][ 1][    2]=-5.3910797560098931e-16

Component 3:
  DenseVector "SOL[ 0][ 2]" with 1 elements:
  SOL[ 0][ 2][    1]=-9.8161936903907244e-16

Component 4:
  DenseVector "SOL[ 0][ 3]" with 2 elements:
  SOL[ 0][ 3][    1]= 7.1439627244724329e-17
  SOL[ 0][ 3][    2]=-1.2992516776400887e-16

CompoundVector "resid" with 8 components:

Component 1:
  DenseVector "resid[ 0]" with 4 elements:
  resid[ 0][    1]= 0.0000000000000000e+00
  resid[ 0][    2]=-4.4408920985006262e-16
  resid[ 0][    3]= 2.0816681711721685e-17
  resid[ 0][    4]= 4.1730941618967066e-16

Component 2:
  DenseVector "resid[ 1]" with 2 elements:
  resid[ 1][    1]=-1.7347234759768071e-18
  resid[ 1][    2]=-6.9388939039072284e-18

Component 3:
  DenseVector "resid[ 2]" with 1 elements:
  resid[ 2][    1]= 5.5511151231257827e-17

Component 4:
  DenseVector "resid[ 3]" with 2 elements:
  resid[ 3][    1]=-1.7763568394002505e-15
  resid[ 3][    2]= 0.0000000000000000e+00

Component 5:
  DenseVector "resid[ 4]" with 4 elements:
  resid[ 4][    1]= 0.0000000000000000e+00
  resid[ 4][    2]= 0.0000000000000000e+00
  resid[ 4][    3]= 0.0000000000000000e+00
  resid[ 4][    4]= 0.0000000000000000e+00

Component 6:
  DenseVector "resid[ 5]" with 0 elements:

Component 7:
  DenseVector "resid[ 6]" with 2 elements:
  resid[ 6][    1]=-1.2490009027033011e-16
  resid[ 6][    2]= 1.1102230246251565e-16

Component 8:
  DenseVector "resid[ 7]" with 0 elements:
max-norm resid_x  4.440892e-16
max-norm resid_s  6.938894e-18
max-norm resid_c  5.551115e-17
max-norm resid_d  1.776357e-15
max-norm resid_zL 0.000000e+00
max-norm resid_zU 0.000000e+00
max-norm resid_vL 1.249001e-16
max-norm resid_vU 0.000000e+00
nrm_rhs = 5.63e+00 nrm_sol = 1.38e+01 nrm_resid = 1.78e-15
residual_ratio = 9.137643e-17
*** Step Calculated for Iteration: 2

CompoundVector "delta" with 8 components:

Component 1:
  DenseVector "delta[ 0]" with 4 elements:
  delta[ 0][    1]= 5.3410710546106088e-01
  delta[ 0][    2]=-8.2964316391839724e-02
  delta[ 0][    3]=-2.4091324935222608e-01
  delta[ 0][    4]=-2.1022953971699515e-01

Component 2:
  DenseVector "delta[ 1]" with 2 elements:
  delta[ 1][    1]=-1.3805687699092420e+01
  delta[ 1][    2]=-2.1835892986756655e+00

Component 3:
  DenseVector "delta[ 2]" with 1 elements:
  delta[ 2][    1]= 3.5562863484172724e+00

Component 4:
  DenseVector "delta[ 3]" with 2 elements:
  delta[ 3][    1]=-5.8863213121552613e-02
  delta[ 3][    2]=-1.2860117724860418e-01

Component 5:
  DenseVector "delta[ 4]" with 4 elements:
  delta[ 4][    1]= 1.0816881564367993e+00
  delta[ 4][    2]= 8.7810472413526830e-01
  delta[ 4][    3]= 1.5300954149324555e-01
  delta[ 4][    4]= 3.1486888632530829e-01

Component 6:
  DenseVector "delta[ 5]" with 0 elements:

Component 7:
  DenseVector "delta[ 6]" with 2 elements:
  delta[ 6][    1]= 8.6723235664059716e-03
  delta[ 6][    2]= 4.3514680147757549e-02

Component 8:
  DenseVector "delta[ 7]" with 0 elements:

**************************************************
*** Finding Acceptable Trial Point for Iteration 2:
**************************************************

--> Starting line search in iteration 2 <--
Acceptable Check:
  overall_error =  5.7343015345312738e+00   acceptable_tol_             =  2.5000000000000002e-06
  dual_inf      =  1.5122408611053844e+00   acceptable_dual_inf_tol_    =  1.0000000000000000e+10
  constr_viol   =  0.0000000000000000e+00   acceptable_constr_viol_tol_ =  1.0000000000000000e-02
  compl_inf     =  5.7343015345312738e+00   acceptable_compl_inf_tol_   =  1.0000000000000000e-02
  curr_obj_val_ =  3.6879120268713557e+01   last_obj_val                =  7.8782624220870048e+01
  fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) =  1.1362392499287837e+00 acceptable_obj_change_tol_ =  1.0000000000000000e+20
test iter = 2
The current filter has 0 entries.
Relative step size for delta_x = 4.929382e-01
minimal step size ALPHA_MIN = 5.260747E-13
Starting checks for alpha (primal) = 9.87e-01
Checking acceptability for trial step size alpha_primal_test= 9.866748e-01:
  New values of barrier function     =  3.1307833714662323e+01  (reference  3.7204157752851408e+01):
  New values of constraint violation =  5.4958283264768149e-02  (reference  7.6333501447223284e-03):
reference_theta = 7.633350e-03 reference_gradBarrTDelta = -7.255006e+00
Checking sufficient reduction...
Succeeded...
Checking filter acceptability...
Succeeded...
reference_theta = 7.633350e-03 reference_gradBarrTDelta = -7.255006e+00
Convergence Check:
  overall_error =  6.6992754355230522e-01   IpData().tol()   =  2.4999999999999999e-08
  dual_inf      =  7.3586884616349546e-02   dual_inf_tol_    =  1.0000000000000000e+00
  constr_viol   =  0.0000000000000000e+00   constr_viol_tol_ =  1.0000000000000000e-04
  compl_inf     =  6.6992754355230522e-01   compl_inf_tol_   =  1.0000000000000000e-04
obj val update iter = 3
Acceptable Check:
  overall_error =  6.6992754355230522e-01   acceptable_tol_             =  2.5000000000000002e-06
  dual_inf      =  7.3586884616349546e-02   acceptable_dual_inf_tol_    =  1.0000000000000000e+10
  constr_viol   =  0.0000000000000000e+00   acceptable_constr_viol_tol_ =  1.0000000000000000e-02
  compl_inf     =  6.6992754355230522e-01   acceptable_compl_inf_tol_   =  1.0000000000000000e-02
  curr_obj_val_ =  2.9955742525783506e+01   last_obj_val                =  3.6879120268713557e+01
  fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) =  2.3112021800063745e-01 acceptable_obj_change_tol_ =  1.0000000000000000e+20
test iter = 3

**************************************************
*** Update HessianMatrix for Iteration 3:
**************************************************



**************************************************
*** Summary of Iteration: 3:
**************************************************

iter    objective    inf_pr   inf_du lg(mu)  ||d||  lg(rg) alpha_du alpha_pr  ls
   3  2.9955743e+01 0.00e+00 7.36e-02  -1.0 1.38e+01    -  1.00e+00 9.87e-01f  1 

**************************************************
*** Beginning Iteration 3 from the following point:
**************************************************

Current barrier parameter mu = 1.0000000000000001e-01
Current fraction-to-the-boundary parameter tau = 9.8999999999999999e-01

||curr_x||_inf   = 6.1050744687125991e-01
||curr_s||_inf   = 2.1137592962286437e+01
||curr_y_c||_inf = 1.6931125809660543e+01
||curr_y_d||_inf = 6.5448381919811305e-01
||curr_z_L||_inf = 1.1330347351929215e+00
||curr_z_U||_inf = 0.0000000000000000e+00
||curr_v_L||_inf = 6.5619845647155872e-01
||curr_v_U||_inf = 0.0000000000000000e+00

||delta_x||_inf   = 5.3410710546106088e-01
||delta_s||_inf   = 1.3805687699092420e+01
||delta_y_c||_inf = 3.5562863484172724e+00
||delta_y_d||_inf = 1.2860117724860418e-01
||delta_z_L||_inf = 1.0816881564367993e+00
||delta_z_U||_inf = 0.0000000000000000e+00
||delta_v_L||_inf = 4.3514680147757549e-02
||delta_v_U||_inf = 0.0000000000000000e+00
DenseVector "curr_x" with 4 elements:
curr_x[    1]= 6.1050744687125991e-01
curr_x[    2]= 2.5066503624300060e-02
curr_x[    3]= 3.0799951452384799e-01
curr_x[    4]= 5.6426534980591997e-02
DenseVector "curr_s" with 2 elements:
curr_s[    1]= 2.1137592962286437e+01
curr_s[    2]= 5.0366886547894598e+00
DenseVector "curr_y_c" with 1 elements:
curr_y_c[    1]=-1.6931125809660543e+01
DenseVector "curr_y_d" with 2 elements:
curr_y_d[    1]=-4.2464466873047713e-01
curr_y_d[    2]=-6.5448381919811305e-01
DenseVector "curr_slack_x_L" with 4 elements:
curr_slack_x_L[    1]= 6.1050745687125996e-01
curr_slack_x_L[    2]= 2.5066513624300062e-02
curr_slack_x_L[    3]= 3.0799952452384799e-01
curr_slack_x_L[    4]= 5.6426544980591999e-02
DenseVector "curr_slack_x_U" with 0 elements:
DenseVector "curr_z_L" with 4 elements:
curr_z_L[    1]= 1.0973290105014646e+00
curr_z_L[    2]= 1.1330347351929215e+00
curr_z_L[    3]= 2.0715285281436280e-01
curr_z_L[    4]= 6.3039883173232591e-01
DenseVector "curr_z_U" with 0 elements:
DenseVector "curr_slack_s_L" with 2 elements:
curr_slack_s_L[    1]= 1.3759317228643653e-01
curr_slack_s_L[    2]= 3.6688704789459514e-02
DenseVector "curr_slack_s_U" with 0 elements:
DenseVector "curr_v_L" with 2 elements:
curr_v_L[    1]= 4.2543003321451972e-01
curr_v_L[    2]= 6.5619845647155872e-01
DenseVector "curr_v_U" with 0 elements:
DenseVector "curr_grad_lag_x" with 4 elements:
curr_grad_lag_x[    1]= 3.8723083528255930e-03
curr_grad_lag_x[    2]=-3.0218544358912691e-02
curr_grad_lag_x[    3]=-7.3586884616349546e-02
curr_grad_lag_x[    4]=-1.9277398771568199e-02
DenseVector "curr_grad_lag_s" with 2 elements:
curr_grad_lag_s[    1]=-7.8536448404259440e-04
curr_grad_lag_s[    2]=-1.7146372734456738e-03

CompoundVector "delta" with 8 components:

Component 1:
  DenseVector "delta[ 0]" with 4 elements:
  delta[ 0][    1]= 5.3410710546106088e-01
  delta[ 0][    2]=-8.2964316391839724e-02
  delta[ 0][    3]=-2.4091324935222608e-01
  delta[ 0][    4]=-2.1022953971699515e-01

Component 2:
  DenseVector "delta[ 1]" with 2 elements:
  delta[ 1][    1]=-1.3805687699092420e+01
  delta[ 1][    2]=-2.1835892986756655e+00

Component 3:
  DenseVector "delta[ 2]" with 1 elements:
  delta[ 2][    1]= 3.5562863484172724e+00

Component 4:
  DenseVector "delta[ 3]" with 2 elements:
  delta[ 3][    1]=-5.8863213121552613e-02
  delta[ 3][    2]=-1.2860117724860418e-01

Component 5:
  DenseVector "delta[ 4]" with 4 elements:
  delta[ 4][    1]= 1.0816881564367993e+00
  delta[ 4][    2]= 8.7810472413526830e-01
  delta[ 4][    3]= 1.5300954149324555e-01
  delta[ 4][    4]= 3.1486888632530829e-01

Component 6:
  DenseVector "delta[ 5]" with 0 elements:

Component 7:
  DenseVector "delta[ 6]" with 2 elements:
  delta[ 6][    1]= 8.6723235664059716e-03
  delta[ 6][    2]= 4.3514680147757549e-02

Component 8:
  DenseVector "delta[ 7]" with 0 elements:


***Current NLP Values for Iteration 3:

                                   (scaled)                 (unscaled)
Objective...............:   2.9955742525783506e+01    2.9955742525783506e+01
Dual infeasibility......:   7.3586884616349546e-02    7.3586884616349546e-02
Constraint violation....:   0.0000000000000000e+00    0.0000000000000000e+00
Complementarity.........:   6.6992754355230522e-01    6.6992754355230522e-01
Overall NLP error.......:   6.6992754355230522e-01    6.6992754355230522e-01

DenseVector "grad_f" with 4 elements:
grad_f[    1]= 2.4550000000000001e+01
grad_f[    2]= 2.6750000000000000e+01
grad_f[    3]= 3.9000000000000000e+01
grad_f[    4]= 4.0500000000000000e+01
DenseVector "curr_c" with 1 elements:
curr_c[    1]= 0.0000000000000000e+00
DenseVector "curr_d" with 2 elements:
curr_d[    1]= 2.1082634679021670e+01
curr_d[    2]= 5.0366886547894607e+00
DenseVector "curr_d - curr_s" with 2 elements:
curr_d - curr_s[    1]=-5.4958283264767260e-02
curr_d - curr_s[    2]= 8.8817841970012523e-16

GenTMatrix "jac_c" of dimension 1 by 4 with 4 nonzero elements:
jac_c[    1,    1]= 1.0000000000000000e+00  (0)
jac_c[    1,    2]= 1.0000000000000000e+00  (1)
jac_c[    1,    3]= 1.0000000000000000e+00  (2)
jac_c[    1,    4]= 1.0000000000000000e+00  (3)

GenTMatrix "jac_d" of dimension 2 by 4 with 8 nonzero elements:
jac_d[    2,    1]= 2.2999999999999998e+00  (0)
jac_d[    2,    2]= 5.5999999999999996e+00  (1)
jac_d[    2,    3]= 1.1100000000000000e+01  (2)
jac_d[    2,    4]= 1.3000000000000000e+00  (3)
jac_d[    1,    1]= 1.1803657166624788e+01  (4)
jac_d[    1,    2]= 1.1894529671351799e+01  (5)
jac_d[    1,    3]= 3.4547797039114144e+01  (6)
jac_d[    1,    4]= 5.2059817113711276e+01  (7)

SymTMatrix "W" of dimension 4 with 10 nonzero elements:
W[    1,    1]= 1.2961977264479624e-01  (0)
W[    2,    1]=-1.9359244327110846e-04  (1)
W[    3,    1]=-2.5665216490371118e-01  (2)
W[    4,    1]=-1.4220540729077426e-03  (3)
W[    2,    2]= 9.2665923029522784e-02  (4)
W[    3,    2]=-7.1506133743770269e-03  (5)
W[    4,    2]=-3.9620000387046776e-05  (6)
W[    3,    3]= 5.1893307868279581e-01  (7)
W[    4,    3]=-5.2525598112222266e-02  (8)
W[    4,    4]= 3.0211010583495224e-01  (9)



**************************************************
*** Update Barrier Parameter for Iteration 3:
**************************************************

Optimality Error for Barrier Sub-problem = 5.699275e-01
  sub_problem_error < kappa_eps * mu (1.000000e+00)
Updating mu=   1.0000000000000001e-01 and tau=   9.8999999999999999e-01 to new_mu=   2.0000000000000004e-02 and new_tau=   9.8999999999999999e-01
Barrier Parameter: 2.000000e-02

**************************************************
*** Solving the Primal Dual System for Iteration 3:
**************************************************

Solving system with delta_x=0.000000e+00 delta_s=0.000000e+00
                    delta_c=0.000000e+00 delta_d=0.000000e+00

CompoundVector "RHS[ 0]" with 4 components:

Component 1:
  DenseVector "RHS[ 0][ 0]" with 4 elements:
  RHS[ 0][ 0][    1]= 1.0684418862324438e+00
  RHS[ 0][ 0][    2]= 3.0493917903812756e-01
  RHS[ 0][ 0][    3]= 6.8631003019044179e-02
  RHS[ 0][ 0][    4]= 2.5667852454646373e-01

Component 2:
  DenseVector "RHS[ 0][ 1]" with 2 elements:
  RHS[ 0][ 1][    1]= 2.7928881895233321e-01
  RHS[ 0][ 1][    2]= 1.0935711666036239e-01

Component 3:
  DenseVector "RHS[ 0][ 2]" with 1 elements:
  RHS[ 0][ 2][    1]= 0.0000000000000000e+00

Component 4:
  DenseVector "RHS[ 0][ 3]" with 2 elements:
  RHS[ 0][ 3][    1]=-5.4958283264767260e-02
  RHS[ 0][ 3][    2]= 8.8817841970012523e-16

CompoundSymMatrix "KKT" with 4 rows and columns components:
Component for row 0 and column 0:

  SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms:
  Term 0 with factor  1.0000000000000000e+00 and the following matrix:

    SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements:
    Term: 0[    1,    1]= 1.2961977264479624e-01  (0)
    Term: 0[    2,    1]=-1.9359244327110846e-04  (1)
    Term: 0[    3,    1]=-2.5665216490371118e-01  (2)
    Term: 0[    4,    1]=-1.4220540729077426e-03  (3)
    Term: 0[    2,    2]= 9.2665923029522784e-02  (4)
    Term: 0[    3,    2]=-7.1506133743770269e-03  (5)
    Term: 0[    4,    2]=-3.9620000387046776e-05  (6)
    Term: 0[    3,    3]= 5.1893307868279581e-01  (7)
    Term: 0[    4,    3]=-5.2525598112222266e-02  (8)
    Term: 0[    4,    4]= 3.0211010583495224e-01  (9)
  Term 1 with factor  1.0000000000000000e+00 and the following matrix:

    DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements:
      DenseVector "Term: 1" with 4 elements:
      Term: 1[    1]= 1.7974047624660914e+00
      Term: 1[    2]= 4.5201129769180639e+01
      Term: 1[    3]= 6.7257523573976563e-01
      Term: 1[    4]= 1.1172026072997250e+01
Component for row 1 and column 0:
This component has not been set.
Component for row 1 and column 1:

  DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[1][1]" with 2 elements:
    KKT[1][1][    1]= 3.0919414542523573e+00
    KKT[1][1][    2]= 1.7885571601319690e+01
Component for row 2 and column 0:

  GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements:
  KKT[2][0][    1,    1]= 1.0000000000000000e+00  (0)
  KKT[2][0][    1,    2]= 1.0000000000000000e+00  (1)
  KKT[2][0][    1,    3]= 1.0000000000000000e+00  (2)
  KKT[2][0][    1,    4]= 1.0000000000000000e+00  (3)
Component for row 2 and column 1:
This component has not been set.
Component for row 2 and column 2:

  DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements:
    DenseVector "KKT[2][2]" with 1 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
Component for row 3 and column 0:

  GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements:
  KKT[3][0][    2,    1]= 2.2999999999999998e+00  (0)
  KKT[3][0][    2,    2]= 5.5999999999999996e+00  (1)
  KKT[3][0][    2,    3]= 1.1100000000000000e+01  (2)
  KKT[3][0][    2,    4]= 1.3000000000000000e+00  (3)
  KKT[3][0][    1,    1]= 1.1803657166624788e+01  (4)
  KKT[3][0][    1,    2]= 1.1894529671351799e+01  (5)
  KKT[3][0][    1,    3]= 3.4547797039114144e+01  (6)
  KKT[3][0][    1,    4]= 5.2059817113711276e+01  (7)
Component for row 3 and column 1:

  IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00.
Component for row 3 and column 2:
This component has not been set.
Component for row 3 and column 3:

  DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[3][3]" with 2 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
******* KKT SYSTEM *******
(0) KKT[1][1] =   1.296197726447962e-01
(1) KKT[2][1] =  -1.935924432711085e-04
(2) KKT[3][1] =  -2.566521649037112e-01
(3) KKT[4][1] =  -1.422054072907743e-03
(4) KKT[2][2] =   9.266592302952278e-02
(5) KKT[3][2] =  -7.150613374377027e-03
(6) KKT[4][2] =  -3.962000038704678e-05
(7) KKT[3][3] =   5.189330786827958e-01
(8) KKT[4][3] =  -5.252559811222227e-02
(9) KKT[4][4] =   3.021101058349522e-01
(10) KKT[1][1] =   1.797404762466091e+00
(11) KKT[2][2] =   4.520112976918064e+01
(12) KKT[3][3] =   6.725752357397656e-01
(13) KKT[4][4] =   1.117202607299725e+01
(14) KKT[5][5] =   3.091941454252357e+00
(15) KKT[6][6] =   1.788557160131969e+01
(16) KKT[7][1] =   1.000000000000000e+00
(17) KKT[7][2] =   1.000000000000000e+00
(18) KKT[7][3] =   1.000000000000000e+00
(19) KKT[7][4] =   1.000000000000000e+00
(20) KKT[7][7] =  -0.000000000000000e+00
(21) KKT[9][1] =   2.300000000000000e+00
(22) KKT[9][2] =   5.600000000000000e+00
(23) KKT[9][3] =   1.110000000000000e+01
(24) KKT[9][4] =   1.300000000000000e+00
(25) KKT[8][1] =   1.180365716662479e+01
(26) KKT[8][2] =   1.189452967135180e+01
(27) KKT[8][3] =   3.454779703911414e+01
(28) KKT[8][4] =   5.205981711371128e+01
(29) KKT[8][5] =  -1.000000000000000e+00
(30) KKT[9][6] =  -1.000000000000000e+00
(31) KKT[8][8] =  -0.000000000000000e+00
(32) KKT[9][9] =  -0.000000000000000e+00
Right hand side 0 in TSymLinearSolver:
Trhs[    0,    0] =  1.0684418862324438e+00
Trhs[    0,    1] =  3.0493917903812756e-01
Trhs[    0,    2] =  6.8631003019044179e-02
Trhs[    0,    3] =  2.5667852454646373e-01
Trhs[    0,    4] =  2.7928881895233321e-01
Trhs[    0,    5] =  1.0935711666036239e-01
Trhs[    0,    6] =  0.0000000000000000e+00
Trhs[    0,    7] = -5.4958283264767260e-02
Trhs[    0,    8] =  8.8817841970012523e-16
HSL_MA97: delays 0, nfactor 45.000000, nflops 285.000000, maxfront 9
Ma97SolverInterface::Factorization: ma97_factor_solve took      0.000
Solution 0 in TSymLinearSolver:
Tsol[    0,    0] =  9.3943926802057612e-03
Tsol[    0,    1] = -1.2165304472800767e-02
Tsol[    0,    2] =  4.6683086101839966e-03
Tsol[    0,    3] = -1.8973968175889666e-03
Tsol[    0,    4] =  8.3647545802574316e-02
Tsol[    0,    5] =  2.8330078269647920e-03
Tsol[    0,    6] =  1.4303226837705822e+00
Tsol[    0,    7] = -2.0655504538880903e-02
Tsol[    0,    8] = -5.8687152324084516e-02
Factorization successful.

CompoundVector "SOL[ 0]" with 4 components:

Component 1:
  DenseVector "SOL[ 0][ 0]" with 4 elements:
  SOL[ 0][ 0][    1]= 9.3943926802057612e-03
  SOL[ 0][ 0][    2]=-1.2165304472800767e-02
  SOL[ 0][ 0][    3]= 4.6683086101839966e-03
  SOL[ 0][ 0][    4]=-1.8973968175889666e-03

Component 2:
  DenseVector "SOL[ 0][ 1]" with 2 elements:
  SOL[ 0][ 1][    1]= 8.3647545802574316e-02
  SOL[ 0][ 1][    2]= 2.8330078269647920e-03

Component 3:
  DenseVector "SOL[ 0][ 2]" with 1 elements:
  SOL[ 0][ 2][    1]= 1.4303226837705822e+00

Component 4:
  DenseVector "SOL[ 0][ 3]" with 2 elements:
  SOL[ 0][ 3][    1]=-2.0655504538880903e-02
  SOL[ 0][ 3][    2]=-5.8687152324084516e-02
Number of trial factorizations performed: 1
Perturbation parameters: delta_x=0.000000e+00 delta_s=0.000000e+00
                         delta_c=0.000000e+00 delta_d=0.000000e+00

CompoundVector "resid" with 8 components:

Component 1:
  DenseVector "resid[ 0]" with 4 elements:
  resid[ 0][    1]= 1.1666015375944028e-16
  resid[ 0][    2]=-6.5919492087118670e-16
  resid[ 0][    3]= 2.5257573810222311e-15
  resid[ 0][    4]= 9.3328123007552222e-15

Component 2:
  DenseVector "resid[ 1]" with 2 elements:
  resid[ 1][    1]= 3.8163916471489756e-17
  resid[ 1][    2]= 1.3877787807814457e-17

Component 3:
  DenseVector "resid[ 2]" with 1 elements:
  resid[ 2][    1]= 2.3852447794681098e-17

Component 4:
  DenseVector "resid[ 3]" with 2 elements:
  resid[ 3][    1]=-1.3877787807814457e-17
  resid[ 3][    2]=-2.3418766925686896e-17

Component 5:
  DenseVector "resid[ 4]" with 4 elements:
  resid[ 4][    1]= 0.0000000000000000e+00
  resid[ 4][    2]= 0.0000000000000000e+00
  resid[ 4][    3]= 0.0000000000000000e+00
  resid[ 4][    4]= 0.0000000000000000e+00

Component 6:
  DenseVector "resid[ 5]" with 0 elements:

Component 7:
  DenseVector "resid[ 6]" with 2 elements:
  resid[ 6][    1]= 0.0000000000000000e+00
  resid[ 6][    2]= 0.0000000000000000e+00

Component 8:
  DenseVector "resid[ 7]" with 0 elements:
max-norm resid_x  9.332812e-15
max-norm resid_s  3.816392e-17
max-norm resid_c  2.385245e-17
max-norm resid_d  2.341877e-17
max-norm resid_zL 0.000000e+00
max-norm resid_zU 0.000000e+00
max-norm resid_vL 0.000000e+00
max-norm resid_vU 0.000000e+00
nrm_rhs = 6.50e-01 nrm_sol = 1.43e+00 nrm_resid = 9.33e-15
residual_ratio = 4.486389e-15

CompoundVector "RHS[ 0]" with 4 components:

Component 1:
  DenseVector "RHS[ 0][ 0]" with 4 elements:
  RHS[ 0][ 0][    1]= 1.1666015375944028e-16
  RHS[ 0][ 0][    2]=-6.5919492087118670e-16
  RHS[ 0][ 0][    3]= 2.5257573810222311e-15
  RHS[ 0][ 0][    4]= 9.3328123007552222e-15

Component 2:
  DenseVector "RHS[ 0][ 1]" with 2 elements:
  RHS[ 0][ 1][    1]= 3.8163916471489756e-17
  RHS[ 0][ 1][    2]= 1.3877787807814457e-17

Component 3:
  DenseVector "RHS[ 0][ 2]" with 1 elements:
  RHS[ 0][ 2][    1]= 2.3852447794681098e-17

Component 4:
  DenseVector "RHS[ 0][ 3]" with 2 elements:
  RHS[ 0][ 3][    1]=-1.3877787807814457e-17
  RHS[ 0][ 3][    2]=-2.3418766925686896e-17

CompoundSymMatrix "KKT" with 4 rows and columns components:
Component for row 0 and column 0:

  SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms:
  Term 0 with factor  1.0000000000000000e+00 and the following matrix:

    SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements:
    Term: 0[    1,    1]= 1.2961977264479624e-01  (0)
    Term: 0[    2,    1]=-1.9359244327110846e-04  (1)
    Term: 0[    3,    1]=-2.5665216490371118e-01  (2)
    Term: 0[    4,    1]=-1.4220540729077426e-03  (3)
    Term: 0[    2,    2]= 9.2665923029522784e-02  (4)
    Term: 0[    3,    2]=-7.1506133743770269e-03  (5)
    Term: 0[    4,    2]=-3.9620000387046776e-05  (6)
    Term: 0[    3,    3]= 5.1893307868279581e-01  (7)
    Term: 0[    4,    3]=-5.2525598112222266e-02  (8)
    Term: 0[    4,    4]= 3.0211010583495224e-01  (9)
  Term 1 with factor  1.0000000000000000e+00 and the following matrix:

    DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements:
      DenseVector "Term: 1" with 4 elements:
      Term: 1[    1]= 1.7974047624660914e+00
      Term: 1[    2]= 4.5201129769180639e+01
      Term: 1[    3]= 6.7257523573976563e-01
      Term: 1[    4]= 1.1172026072997250e+01
Component for row 1 and column 0:
This component has not been set.
Component for row 1 and column 1:

  DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[1][1]" with 2 elements:
    KKT[1][1][    1]= 3.0919414542523573e+00
    KKT[1][1][    2]= 1.7885571601319690e+01
Component for row 2 and column 0:

  GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements:
  KKT[2][0][    1,    1]= 1.0000000000000000e+00  (0)
  KKT[2][0][    1,    2]= 1.0000000000000000e+00  (1)
  KKT[2][0][    1,    3]= 1.0000000000000000e+00  (2)
  KKT[2][0][    1,    4]= 1.0000000000000000e+00  (3)
Component for row 2 and column 1:
This component has not been set.
Component for row 2 and column 2:

  DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements:
    DenseVector "KKT[2][2]" with 1 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
Component for row 3 and column 0:

  GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements:
  KKT[3][0][    2,    1]= 2.2999999999999998e+00  (0)
  KKT[3][0][    2,    2]= 5.5999999999999996e+00  (1)
  KKT[3][0][    2,    3]= 1.1100000000000000e+01  (2)
  KKT[3][0][    2,    4]= 1.3000000000000000e+00  (3)
  KKT[3][0][    1,    1]= 1.1803657166624788e+01  (4)
  KKT[3][0][    1,    2]= 1.1894529671351799e+01  (5)
  KKT[3][0][    1,    3]= 3.4547797039114144e+01  (6)
  KKT[3][0][    1,    4]= 5.2059817113711276e+01  (7)
Component for row 3 and column 1:

  IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00.
Component for row 3 and column 2:
This component has not been set.
Component for row 3 and column 3:

  DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[3][3]" with 2 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
******* KKT SYSTEM *******
(0) KKT[1][1] =   1.296197726447962e-01
(1) KKT[2][1] =  -1.935924432711085e-04
(2) KKT[3][1] =  -2.566521649037112e-01
(3) KKT[4][1] =  -1.422054072907743e-03
(4) KKT[2][2] =   9.266592302952278e-02
(5) KKT[3][2] =  -7.150613374377027e-03
(6) KKT[4][2] =  -3.962000038704678e-05
(7) KKT[3][3] =   5.189330786827958e-01
(8) KKT[4][3] =  -5.252559811222227e-02
(9) KKT[4][4] =   3.021101058349522e-01
(10) KKT[1][1] =   1.797404762466091e+00
(11) KKT[2][2] =   4.520112976918064e+01
(12) KKT[3][3] =   6.725752357397656e-01
(13) KKT[4][4] =   1.117202607299725e+01
(14) KKT[5][5] =   3.091941454252357e+00
(15) KKT[6][6] =   1.788557160131969e+01
(16) KKT[7][1] =   1.000000000000000e+00
(17) KKT[7][2] =   1.000000000000000e+00
(18) KKT[7][3] =   1.000000000000000e+00
(19) KKT[7][4] =   1.000000000000000e+00
(20) KKT[7][7] =  -0.000000000000000e+00
(21) KKT[9][1] =   2.300000000000000e+00
(22) KKT[9][2] =   5.600000000000000e+00
(23) KKT[9][3] =   1.110000000000000e+01
(24) KKT[9][4] =   1.300000000000000e+00
(25) KKT[8][1] =   1.180365716662479e+01
(26) KKT[8][2] =   1.189452967135180e+01
(27) KKT[8][3] =   3.454779703911414e+01
(28) KKT[8][4] =   5.205981711371128e+01
(29) KKT[8][5] =  -1.000000000000000e+00
(30) KKT[9][6] =  -1.000000000000000e+00
(31) KKT[8][8] =  -0.000000000000000e+00
(32) KKT[9][9] =  -0.000000000000000e+00
Right hand side 0 in TSymLinearSolver:
Trhs[    0,    0] =  1.1666015375944028e-16
Trhs[    0,    1] = -6.5919492087118670e-16
Trhs[    0,    2] =  2.5257573810222311e-15
Trhs[    0,    3] =  9.3328123007552222e-15
Trhs[    0,    4] =  3.8163916471489756e-17
Trhs[    0,    5] =  1.3877787807814457e-17
Trhs[    0,    6] =  2.3852447794681098e-17
Trhs[    0,    7] = -1.3877787807814457e-17
Trhs[    0,    8] = -2.3418766925686896e-17
Solution 0 in TSymLinearSolver:
Tsol[    0,    0] =  2.9439117543315245e-17
Tsol[    0,    1] =  5.0446486530495238e-18
Tsol[    0,    2] = -1.2359985467810363e-17
Tsol[    0,    3] =  1.7286670661265809e-18
Tsol[    0,    4] =  8.4354583627052274e-17
Tsol[    0,    5] = -1.5569801774341239e-17
Tsol[    0,    6] = -1.8989769628439699e-15
Tsol[    0,    7] =  2.2265551750119036e-16
Tsol[    0,    8] = -2.9235259226114898e-16
Factorization successful.

CompoundVector "SOL[ 0]" with 4 components:

Component 1:
  DenseVector "SOL[ 0][ 0]" with 4 elements:
  SOL[ 0][ 0][    1]= 2.9439117543315245e-17
  SOL[ 0][ 0][    2]= 5.0446486530495238e-18
  SOL[ 0][ 0][    3]=-1.2359985467810363e-17
  SOL[ 0][ 0][    4]= 1.7286670661265809e-18

Component 2:
  DenseVector "SOL[ 0][ 1]" with 2 elements:
  SOL[ 0][ 1][    1]= 8.4354583627052274e-17
  SOL[ 0][ 1][    2]=-1.5569801774341239e-17

Component 3:
  DenseVector "SOL[ 0][ 2]" with 1 elements:
  SOL[ 0][ 2][    1]=-1.8989769628439699e-15

Component 4:
  DenseVector "SOL[ 0][ 3]" with 2 elements:
  SOL[ 0][ 3][    1]= 2.2265551750119036e-16
  SOL[ 0][ 3][    2]=-2.9235259226114898e-16

CompoundVector "resid" with 8 components:

Component 1:
  DenseVector "resid[ 0]" with 4 elements:
  resid[ 0][    1]= 1.1666015375944028e-16
  resid[ 0][    2]= 6.9388939039072284e-18
  resid[ 0][    3]=-2.7755575615628914e-17
  resid[ 0][    4]= 6.9388939039072284e-18

Component 2:
  DenseVector "resid[ 1]" with 2 elements:
  resid[ 1][    1]= 0.0000000000000000e+00
  resid[ 1][    2]= 0.0000000000000000e+00

Component 3:
  DenseVector "resid[ 2]" with 1 elements:
  resid[ 2][    1]=-4.3368086899420177e-19

Component 4:
  DenseVector "resid[ 3]" with 2 elements:
  resid[ 3][    1]=-2.7755575615628914e-17
  resid[ 3][    2]= 4.3368086899420177e-19

Component 5:
  DenseVector "resid[ 4]" with 4 elements:
  resid[ 4][    1]= 0.0000000000000000e+00
  resid[ 4][    2]=-3.4694469519536142e-18
  resid[ 4][    3]= 0.0000000000000000e+00
  resid[ 4][    4]=-3.4694469519536142e-18

Component 6:
  DenseVector "resid[ 5]" with 0 elements:

Component 7:
  DenseVector "resid[ 6]" with 2 elements:
  resid[ 6][    1]= 1.3010426069826053e-18
  resid[ 6][    2]= 0.0000000000000000e+00

Component 8:
  DenseVector "resid[ 7]" with 0 elements:
max-norm resid_x  1.166602e-16
max-norm resid_s  0.000000e+00
max-norm resid_c  4.336809e-19
max-norm resid_d  2.775558e-17
max-norm resid_zL 3.469447e-18
max-norm resid_zU 0.000000e+00
max-norm resid_vL 1.301043e-18
max-norm resid_vU 0.000000e+00
nrm_rhs = 6.50e-01 nrm_sol = 1.43e+00 nrm_resid = 1.17e-16
residual_ratio = 5.607987e-17
*** Step Calculated for Iteration: 3

CompoundVector "delta" with 8 components:

Component 1:
  DenseVector "delta[ 0]" with 4 elements:
  delta[ 0][    1]=-9.3943926802057317e-03
  delta[ 0][    2]= 1.2165304472800773e-02
  delta[ 0][    3]=-4.6683086101840087e-03
  delta[ 0][    4]= 1.8973968175889683e-03

Component 2:
  DenseVector "delta[ 1]" with 2 elements:
  delta[ 1][    1]=-8.3647545802574233e-02
  delta[ 1][    2]=-2.8330078269648076e-03

Component 3:
  DenseVector "delta[ 2]" with 1 elements:
  delta[ 2][    1]=-1.4303226837705842e+00

Component 4:
  DenseVector "delta[ 3]" with 2 elements:
  delta[ 3][    1]= 2.0655504538881125e-02
  delta[ 3][    2]= 5.8687152324084224e-02

Component 5:
  DenseVector "delta[ 4]" with 4 elements:
  delta[ 4][    1]=-1.0476838517357401e+00
  delta[ 4][    2]=-8.8504302955370151e-01
  delta[ 4][    3]=-1.3907789887139324e-01
  delta[ 4][    4]=-2.9715349003495783e-01

Component 6:
  DenseVector "delta[ 5]" with 0 elements:

Component 7:
  DenseVector "delta[ 6]" with 2 elements:
  delta[ 6][    1]=-2.1440669022923721e-02
  delta[ 6][    2]=-6.0401589597529899e-02

Component 8:
  DenseVector "delta[ 7]" with 0 elements:

**************************************************
*** Finding Acceptable Trial Point for Iteration 3:
**************************************************

--> Starting line search in iteration 3 <--
Mu has changed in line search - resetting watchdog counters.
Acceptable Check:
  overall_error =  6.6992754355230522e-01   acceptable_tol_             =  2.5000000000000002e-06
  dual_inf      =  7.3586884616349546e-02   acceptable_dual_inf_tol_    =  1.0000000000000000e+10
  constr_viol   =  0.0000000000000000e+00   acceptable_constr_viol_tol_ =  1.0000000000000000e-02
  compl_inf     =  6.6992754355230522e-01   acceptable_compl_inf_tol_   =  1.0000000000000000e-02
  curr_obj_val_ =  2.9955742525783506e+01   last_obj_val                =  3.6879120268713557e+01
  fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) =  2.3112021800063745e-01 acceptable_obj_change_tol_ =  1.0000000000000000e+20
test iter = 3
The current filter has 0 entries.
Relative step size for delta_x = 1.186782e-02
minimal step size ALPHA_MIN = 4.230850E-09
Starting checks for alpha (primal) = 1.00e+00
Checking acceptability for trial step size alpha_primal_test= 1.000000e+00:
  New values of barrier function     =  3.0228106092943143e+01  (reference  3.0226160763559271e+01):
  New values of constraint violation =  2.0173667046208266e-05  (reference  5.4958283264768149e-02):
reference_theta = 5.495828e-02 reference_gradBarrTDelta = -6.494946e-03
Checking sufficient reduction...
Succeeded...
Checking filter acceptability...
Succeeded...
reference_theta = 5.495828e-02 reference_gradBarrTDelta = -6.494946e-03
Convergence Check:
  overall_error =  2.9842353507916034e-02   IpData().tol()   =  2.4999999999999999e-08
  dual_inf      =  3.9825445417251970e-05   dual_inf_tol_    =  1.0000000000000000e+00
  constr_viol   =  0.0000000000000000e+00   constr_viol_tol_ =  1.0000000000000000e-04
  compl_inf     =  2.9842353507916034e-02   compl_inf_tol_   =  1.0000000000000000e-04
obj val update iter = 4
Acceptable Check:
  overall_error =  2.9842353507916034e-02   acceptable_tol_             =  2.5000000000000002e-06
  dual_inf      =  3.9825445417251970e-05   acceptable_dual_inf_tol_    =  1.0000000000000000e+10
  constr_viol   =  0.0000000000000000e+00   acceptable_constr_viol_tol_ =  1.0000000000000000e-02
  compl_inf     =  2.9842353507916034e-02   acceptable_compl_inf_tol_   =  1.0000000000000000e-02
  curr_obj_val_ =  2.9945312615447051e+01   last_obj_val                =  2.9955742525783506e+01
  fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) =  3.4829859585687424e-04 acceptable_obj_change_tol_ =  1.0000000000000000e+20
test iter = 4

**************************************************
*** Update HessianMatrix for Iteration 4:
**************************************************



**************************************************
*** Summary of Iteration: 4:
**************************************************

iter    objective    inf_pr   inf_du lg(mu)  ||d||  lg(rg) alpha_du alpha_pr  ls
   4  2.9945313e+01 0.00e+00 3.98e-05  -1.7 8.36e-02    -  1.00e+00 1.00e+00h  1 

**************************************************
*** Beginning Iteration 4 from the following point:
**************************************************

Current barrier parameter mu = 2.0000000000000004e-02
Current fraction-to-the-boundary parameter tau = 9.8999999999999999e-01

||curr_x||_inf   = 6.0111305419105421e-01
||curr_s||_inf   = 2.1053945416483863e+01
||curr_y_c||_inf = 1.8361448493431126e+01
||curr_y_d||_inf = 5.9579666687402888e-01
||curr_z_L||_inf = 3.3324534169736808e-01
||curr_z_U||_inf = 0.0000000000000000e+00
||curr_v_L||_inf = 5.9579686687402877e-01
||curr_v_U||_inf = 0.0000000000000000e+00

||delta_x||_inf   = 1.2165304472800773e-02
||delta_s||_inf   = 8.3647545802574233e-02
||delta_y_c||_inf = 1.4303226837705842e+00
||delta_y_d||_inf = 5.8687152324084224e-02
||delta_z_L||_inf = 1.0476838517357401e+00
||delta_z_U||_inf = 0.0000000000000000e+00
||delta_v_L||_inf = 6.0401589597529899e-02
||delta_v_U||_inf = 0.0000000000000000e+00
DenseVector "curr_x" with 4 elements:
curr_x[    1]= 6.0111305419105421e-01
curr_x[    2]= 3.7231808097100832e-02
curr_x[    3]= 3.0333120591366397e-01
curr_x[    4]= 5.8323931798180968e-02
DenseVector "curr_s" with 2 elements:
curr_s[    1]= 2.1053945416483863e+01
curr_s[    2]= 5.0338556469624951e+00
DenseVector "curr_y_c" with 1 elements:
curr_y_c[    1]=-1.8361448493431126e+01
DenseVector "curr_y_d" with 2 elements:
curr_y_d[    1]=-4.0398916419159603e-01
curr_y_d[    2]=-5.9579666687402888e-01
DenseVector "curr_slack_x_L" with 4 elements:
curr_slack_x_L[    1]= 6.0111306419105426e-01
curr_slack_x_L[    2]= 3.7231818097100834e-02
curr_slack_x_L[    3]= 3.0333121591366397e-01
curr_slack_x_L[    4]= 5.8323941798180970e-02
DenseVector "curr_slack_x_U" with 0 elements:
DenseVector "curr_z_L" with 4 elements:
curr_z_L[    1]= 4.9645158765724506e-02
curr_z_L[    2]= 2.4799170563922002e-01
curr_z_L[    3]= 6.8074953942969557e-02
curr_z_L[    4]= 3.3324534169736808e-01
DenseVector "curr_z_U" with 0 elements:
DenseVector "curr_slack_s_L" with 2 elements:
curr_slack_s_L[    1]= 5.3945626483862696e-02
curr_slack_s_L[    2]= 3.3855696962494797e-02
DenseVector "curr_slack_s_U" with 0 elements:
DenseVector "curr_v_L" with 2 elements:
curr_v_L[    1]= 4.0398936419159598e-01
curr_v_L[    2]= 5.9579686687402877e-01
DenseVector "curr_v_U" with 0 elements:
DenseVector "curr_grad_lag_x" with 4 elements:
curr_grad_lag_x[    1]=-5.0734982881550650e-08
curr_grad_lag_x[    2]=-3.9825445417251970e-05
curr_grad_lag_x[    3]=-1.8922175486352222e-05
curr_grad_lag_x[    4]=-2.8665229497737421e-05
DenseVector "curr_grad_lag_s" with 2 elements:
curr_grad_lag_s[    1]=-1.9999999995023998e-07
curr_grad_lag_s[    2]=-1.9999999989472883e-07

CompoundVector "delta" with 8 components:

Component 1:
  DenseVector "delta[ 0]" with 4 elements:
  delta[ 0][    1]=-9.3943926802057317e-03
  delta[ 0][    2]= 1.2165304472800773e-02
  delta[ 0][    3]=-4.6683086101840087e-03
  delta[ 0][    4]= 1.8973968175889683e-03

Component 2:
  DenseVector "delta[ 1]" with 2 elements:
  delta[ 1][    1]=-8.3647545802574233e-02
  delta[ 1][    2]=-2.8330078269648076e-03

Component 3:
  DenseVector "delta[ 2]" with 1 elements:
  delta[ 2][    1]=-1.4303226837705842e+00

Component 4:
  DenseVector "delta[ 3]" with 2 elements:
  delta[ 3][    1]= 2.0655504538881125e-02
  delta[ 3][    2]= 5.8687152324084224e-02

Component 5:
  DenseVector "delta[ 4]" with 4 elements:
  delta[ 4][    1]=-1.0476838517357401e+00
  delta[ 4][    2]=-8.8504302955370151e-01
  delta[ 4][    3]=-1.3907789887139324e-01
  delta[ 4][    4]=-2.9715349003495783e-01

Component 6:
  DenseVector "delta[ 5]" with 0 elements:

Component 7:
  DenseVector "delta[ 6]" with 2 elements:
  delta[ 6][    1]=-2.1440669022923721e-02
  delta[ 6][    2]=-6.0401589597529899e-02

Component 8:
  DenseVector "delta[ 7]" with 0 elements:


***Current NLP Values for Iteration 4:

                                   (scaled)                 (unscaled)
Objective...............:   2.9945312615447051e+01    2.9945312615447051e+01
Dual infeasibility......:   3.9825445417251970e-05    3.9825445417251970e-05
Constraint violation....:   0.0000000000000000e+00    0.0000000000000000e+00
Complementarity.........:   2.9842353507916034e-02    2.9842353507916034e-02
Overall NLP error.......:   2.9842353507916034e-02    2.9842353507916034e-02

DenseVector "grad_f" with 4 elements:
grad_f[    1]= 2.4550000000000001e+01
grad_f[    2]= 2.6750000000000000e+01
grad_f[    3]= 3.9000000000000000e+01
grad_f[    4]= 4.0500000000000000e+01
DenseVector "curr_c" with 1 elements:
curr_c[    1]= 0.0000000000000000e+00
DenseVector "curr_d" with 2 elements:
curr_d[    1]= 2.1053925242816817e+01
curr_d[    2]= 5.0338556469624951e+00
DenseVector "curr_d - curr_s" with 2 elements:
curr_d - curr_s[    1]=-2.0173667046208266e-05
curr_d - curr_s[    2]= 0.0000000000000000e+00

GenTMatrix "jac_c" of dimension 1 by 4 with 4 nonzero elements:
jac_c[    1,    1]= 1.0000000000000000e+00  (0)
jac_c[    1,    2]= 1.0000000000000000e+00  (1)
jac_c[    1,    3]= 1.0000000000000000e+00  (2)
jac_c[    1,    4]= 1.0000000000000000e+00  (3)

GenTMatrix "jac_d" of dimension 2 by 4 with 8 nonzero elements:
jac_d[    2,    1]= 2.2999999999999998e+00  (0)
jac_d[    2,    2]= 5.5999999999999996e+00  (1)
jac_d[    2,    3]= 1.1100000000000000e+01  (2)
jac_d[    2,    4]= 1.3000000000000000e+00  (3)
jac_d[    1,    1]= 1.1803717741464771e+01  (4)
jac_d[    1,    2]= 1.1891750367844269e+01  (5)
jac_d[    1,    3]= 3.4548333741645472e+01  (6)
jac_d[    1,    4]= 5.2057829831274105e+01  (7)

SymTMatrix "W" of dimension 4 with 10 nonzero elements:
W[    1,    1]= 1.2520753270018345e-01  (0)
W[    2,    1]=-2.8191643735521222e-04  (1)
W[    3,    1]=-2.4781273611387003e-01  (2)
W[    4,    1]=-1.4410901608037975e-03  (3)
W[    2,    2]= 8.9501988165133273e-02  (4)
W[    3,    2]=-1.0415428942485903e-02  (5)
W[    4,    2]=-6.0568203252760305e-05  (6)
W[    3,    3]= 5.0260734681363040e-01  (7)
W[    4,    3]=-5.3241209737109475e-02  (8)
W[    4,    4]= 2.9178817341042568e-01  (9)



**************************************************
*** Update Barrier Parameter for Iteration 4:
**************************************************

Optimality Error for Barrier Sub-problem = 1.076682e-02
  sub_problem_error < kappa_eps * mu (2.000000e-01)
Updating mu=   2.0000000000000004e-02 and tau=   9.8999999999999999e-01 to new_mu=   2.8284271247461909e-03 and new_tau=   9.9717157287525382e-01
  sub_problem_error < kappa_eps * mu (2.828427e-02)
Updating mu=   2.8284271247461909e-03 and tau=   9.9717157287525382e-01 to new_mu=   1.5042412372345582e-04 and new_tau=   9.9984957587627654e-01
Barrier Parameter: 1.504241e-04

**************************************************
*** Solving the Primal Dual System for Iteration 4:
**************************************************

Solving system with delta_x=0.000000e+00 delta_s=0.000000e+00
                    delta_c=0.000000e+00 delta_d=0.000000e+00

CompoundVector "RHS[ 0]" with 4 components:

Component 1:
  DenseVector "RHS[ 0][ 0]" with 4 elements:
  RHS[ 0][ 0][    1]= 4.9394866888990981e-02
  RHS[ 0][ 0][    2]= 2.4391167814604045e-01
  RHS[ 0][ 0][    3]= 6.7560126105459459e-02
  RHS[ 0][ 0][    4]= 3.3063756347666184e-01

Component 2:
  DenseVector "RHS[ 0][ 1]" with 2 elements:
  RHS[ 0][ 1][    1]= 4.0120072604784368e-01
  RHS[ 0][ 1][    2]= 5.9135357202464633e-01

Component 3:
  DenseVector "RHS[ 0][ 2]" with 1 elements:
  RHS[ 0][ 2][    1]= 0.0000000000000000e+00

Component 4:
  DenseVector "RHS[ 0][ 3]" with 2 elements:
  RHS[ 0][ 3][    1]=-2.0173667046208266e-05
  RHS[ 0][ 3][    2]= 0.0000000000000000e+00

CompoundSymMatrix "KKT" with 4 rows and columns components:
Component for row 0 and column 0:

  SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms:
  Term 0 with factor  1.0000000000000000e+00 and the following matrix:

    SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements:
    Term: 0[    1,    1]= 1.2520753270018345e-01  (0)
    Term: 0[    2,    1]=-2.8191643735521222e-04  (1)
    Term: 0[    3,    1]=-2.4781273611387003e-01  (2)
    Term: 0[    4,    1]=-1.4410901608037975e-03  (3)
    Term: 0[    2,    2]= 8.9501988165133273e-02  (4)
    Term: 0[    3,    2]=-1.0415428942485903e-02  (5)
    Term: 0[    4,    2]=-6.0568203252760305e-05  (6)
    Term: 0[    3,    3]= 5.0260734681363040e-01  (7)
    Term: 0[    4,    3]=-5.3241209737109475e-02  (8)
    Term: 0[    4,    4]= 2.9178817341042568e-01  (9)
  Term 1 with factor  1.0000000000000000e+00 and the following matrix:

    DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements:
      DenseVector "Term: 1" with 4 elements:
      Term: 1[    1]= 8.2588720364170254e-02
      Term: 1[    2]= 6.6607465956257084e+00
      Term: 1[    3]= 2.2442449168286549e-01
      Term: 1[    4]= 5.7136971786046438e+00
Component for row 1 and column 0:
This component has not been set.
Component for row 1 and column 1:

  DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[1][1]" with 2 elements:
    KKT[1][1][    1]= 7.4888251471589715e+00
    KKT[1][1][    2]= 1.7598127356056210e+01
Component for row 2 and column 0:

  GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements:
  KKT[2][0][    1,    1]= 1.0000000000000000e+00  (0)
  KKT[2][0][    1,    2]= 1.0000000000000000e+00  (1)
  KKT[2][0][    1,    3]= 1.0000000000000000e+00  (2)
  KKT[2][0][    1,    4]= 1.0000000000000000e+00  (3)
Component for row 2 and column 1:
This component has not been set.
Component for row 2 and column 2:

  DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements:
    DenseVector "KKT[2][2]" with 1 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
Component for row 3 and column 0:

  GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements:
  KKT[3][0][    2,    1]= 2.2999999999999998e+00  (0)
  KKT[3][0][    2,    2]= 5.5999999999999996e+00  (1)
  KKT[3][0][    2,    3]= 1.1100000000000000e+01  (2)
  KKT[3][0][    2,    4]= 1.3000000000000000e+00  (3)
  KKT[3][0][    1,    1]= 1.1803717741464771e+01  (4)
  KKT[3][0][    1,    2]= 1.1891750367844269e+01  (5)
  KKT[3][0][    1,    3]= 3.4548333741645472e+01  (6)
  KKT[3][0][    1,    4]= 5.2057829831274105e+01  (7)
Component for row 3 and column 1:

  IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00.
Component for row 3 and column 2:
This component has not been set.
Component for row 3 and column 3:

  DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[3][3]" with 2 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
******* KKT SYSTEM *******
(0) KKT[1][1] =   1.252075327001834e-01
(1) KKT[2][1] =  -2.819164373552122e-04
(2) KKT[3][1] =  -2.478127361138700e-01
(3) KKT[4][1] =  -1.441090160803797e-03
(4) KKT[2][2] =   8.950198816513327e-02
(5) KKT[3][2] =  -1.041542894248590e-02
(6) KKT[4][2] =  -6.056820325276031e-05
(7) KKT[3][3] =   5.026073468136304e-01
(8) KKT[4][3] =  -5.324120973710948e-02
(9) KKT[4][4] =   2.917881734104257e-01
(10) KKT[1][1] =   8.258872036417025e-02
(11) KKT[2][2] =   6.660746595625708e+00
(12) KKT[3][3] =   2.244244916828655e-01
(13) KKT[4][4] =   5.713697178604644e+00
(14) KKT[5][5] =   7.488825147158972e+00
(15) KKT[6][6] =   1.759812735605621e+01
(16) KKT[7][1] =   1.000000000000000e+00
(17) KKT[7][2] =   1.000000000000000e+00
(18) KKT[7][3] =   1.000000000000000e+00
(19) KKT[7][4] =   1.000000000000000e+00
(20) KKT[7][7] =  -0.000000000000000e+00
(21) KKT[9][1] =   2.300000000000000e+00
(22) KKT[9][2] =   5.600000000000000e+00
(23) KKT[9][3] =   1.110000000000000e+01
(24) KKT[9][4] =   1.300000000000000e+00
(25) KKT[8][1] =   1.180371774146477e+01
(26) KKT[8][2] =   1.189175036784427e+01
(27) KKT[8][3] =   3.454833374164547e+01
(28) KKT[8][4] =   5.205782983127411e+01
(29) KKT[8][5] =  -1.000000000000000e+00
(30) KKT[9][6] =  -1.000000000000000e+00
(31) KKT[8][8] =  -0.000000000000000e+00
(32) KKT[9][9] =  -0.000000000000000e+00
Right hand side 0 in TSymLinearSolver:
Trhs[    0,    0] =  4.9394866888990981e-02
Trhs[    0,    1] =  2.4391167814604045e-01
Trhs[    0,    2] =  6.7560126105459459e-02
Trhs[    0,    3] =  3.3063756347666184e-01
Trhs[    0,    4] =  4.0120072604784368e-01
Trhs[    0,    5] =  5.9135357202464633e-01
Trhs[    0,    6] =  0.0000000000000000e+00
Trhs[    0,    7] = -2.0173667046208266e-05
Trhs[    0,    8] =  0.0000000000000000e+00
HSL_MA97: delays 0, nfactor 45.000000, nflops 285.000000, maxfront 9
Ma97SolverInterface::Factorization: ma97_factor_solve took      0.000
Solution 0 in TSymLinearSolver:
Tsol[    0,    0] = -3.2043419447665721e-02
Tsol[    0,    1] =  3.4467436442666886e-02
Tsol[    0,    2] = -8.5009307475804423e-03
Tsol[    0,    3] =  6.0769137525792877e-03
Tsol[    0,    4] =  5.4324794480247032e-02
Tsol[    0,    5] =  3.2857435929513588e-02
Tsol[    0,    6] =  1.7717710171043718e-02
Tsol[    0,    7] =  5.6281609700731816e-03
Tsol[    0,    8] = -1.3124229943609074e-02
Factorization successful.

CompoundVector "SOL[ 0]" with 4 components:

Component 1:
  DenseVector "SOL[ 0][ 0]" with 4 elements:
  SOL[ 0][ 0][    1]=-3.2043419447665721e-02
  SOL[ 0][ 0][    2]= 3.4467436442666886e-02
  SOL[ 0][ 0][    3]=-8.5009307475804423e-03
  SOL[ 0][ 0][    4]= 6.0769137525792877e-03

Component 2:
  DenseVector "SOL[ 0][ 1]" with 2 elements:
  SOL[ 0][ 1][    1]= 5.4324794480247032e-02
  SOL[ 0][ 1][    2]= 3.2857435929513588e-02

Component 3:
  DenseVector "SOL[ 0][ 2]" with 1 elements:
  SOL[ 0][ 2][    1]= 1.7717710171043718e-02

Component 4:
  DenseVector "SOL[ 0][ 3]" with 2 elements:
  SOL[ 0][ 3][    1]= 5.6281609700731816e-03
  SOL[ 0][ 3][    2]=-1.3124229943609074e-02
Number of trial factorizations performed: 1
Perturbation parameters: delta_x=0.000000e+00 delta_s=0.000000e+00
                         delta_c=0.000000e+00 delta_d=0.000000e+00

CompoundVector "resid" with 8 components:

Component 1:
  DenseVector "resid[ 0]" with 4 elements:
  resid[ 0][    1]=-1.2754763666901675e-15
  resid[ 0][    2]= 1.0437377145292720e-14
  resid[ 0][    3]=-1.3064656507241063e-14
  resid[ 0][    4]= 3.3245521407435780e-14

Component 2:
  DenseVector "resid[ 1]" with 2 elements:
  resid[ 1][    1]=-1.9949319973733282e-17
  resid[ 1][    2]= 6.5919492087118670e-17

Component 3:
  DenseVector "resid[ 2]" with 1 elements:
  resid[ 2][    1]= 1.1275702593849246e-17

Component 4:
  DenseVector "resid[ 3]" with 2 elements:
  resid[ 3][    1]=-1.3877787807814457e-17
  resid[ 3][    2]=-2.7755575615628914e-17

Component 5:
  DenseVector "resid[ 4]" with 4 elements:
  resid[ 4][    1]= 0.0000000000000000e+00
  resid[ 4][    2]= 0.0000000000000000e+00
  resid[ 4][    3]= 0.0000000000000000e+00
  resid[ 4][    4]= 0.0000000000000000e+00

Component 6:
  DenseVector "resid[ 5]" with 0 elements:

Component 7:
  DenseVector "resid[ 6]" with 2 elements:
  resid[ 6][    1]= 0.0000000000000000e+00
  resid[ 6][    2]= 0.0000000000000000e+00

Component 8:
  DenseVector "resid[ 7]" with 0 elements:
max-norm resid_x  3.324552e-14
max-norm resid_s  6.591949e-17
max-norm resid_c  1.127570e-17
max-norm resid_d  2.775558e-17
max-norm resid_zL 0.000000e+00
max-norm resid_zU 0.000000e+00
max-norm resid_vL 0.000000e+00
max-norm resid_vU 0.000000e+00
nrm_rhs = 2.97e-02 nrm_sol = 2.96e-01 nrm_resid = 3.32e-14
residual_ratio = 1.020940e-13

CompoundVector "RHS[ 0]" with 4 components:

Component 1:
  DenseVector "RHS[ 0][ 0]" with 4 elements:
  RHS[ 0][ 0][    1]=-1.2754763666901675e-15
  RHS[ 0][ 0][    2]= 1.0437377145292720e-14
  RHS[ 0][ 0][    3]=-1.3064656507241063e-14
  RHS[ 0][ 0][    4]= 3.3245521407435780e-14

Component 2:
  DenseVector "RHS[ 0][ 1]" with 2 elements:
  RHS[ 0][ 1][    1]=-1.9949319973733282e-17
  RHS[ 0][ 1][    2]= 6.5919492087118670e-17

Component 3:
  DenseVector "RHS[ 0][ 2]" with 1 elements:
  RHS[ 0][ 2][    1]= 1.1275702593849246e-17

Component 4:
  DenseVector "RHS[ 0][ 3]" with 2 elements:
  RHS[ 0][ 3][    1]=-1.3877787807814457e-17
  RHS[ 0][ 3][    2]=-2.7755575615628914e-17

CompoundSymMatrix "KKT" with 4 rows and columns components:
Component for row 0 and column 0:

  SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms:
  Term 0 with factor  1.0000000000000000e+00 and the following matrix:

    SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements:
    Term: 0[    1,    1]= 1.2520753270018345e-01  (0)
    Term: 0[    2,    1]=-2.8191643735521222e-04  (1)
    Term: 0[    3,    1]=-2.4781273611387003e-01  (2)
    Term: 0[    4,    1]=-1.4410901608037975e-03  (3)
    Term: 0[    2,    2]= 8.9501988165133273e-02  (4)
    Term: 0[    3,    2]=-1.0415428942485903e-02  (5)
    Term: 0[    4,    2]=-6.0568203252760305e-05  (6)
    Term: 0[    3,    3]= 5.0260734681363040e-01  (7)
    Term: 0[    4,    3]=-5.3241209737109475e-02  (8)
    Term: 0[    4,    4]= 2.9178817341042568e-01  (9)
  Term 1 with factor  1.0000000000000000e+00 and the following matrix:

    DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements:
      DenseVector "Term: 1" with 4 elements:
      Term: 1[    1]= 8.2588720364170254e-02
      Term: 1[    2]= 6.6607465956257084e+00
      Term: 1[    3]= 2.2442449168286549e-01
      Term: 1[    4]= 5.7136971786046438e+00
Component for row 1 and column 0:
This component has not been set.
Component for row 1 and column 1:

  DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[1][1]" with 2 elements:
    KKT[1][1][    1]= 7.4888251471589715e+00
    KKT[1][1][    2]= 1.7598127356056210e+01
Component for row 2 and column 0:

  GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements:
  KKT[2][0][    1,    1]= 1.0000000000000000e+00  (0)
  KKT[2][0][    1,    2]= 1.0000000000000000e+00  (1)
  KKT[2][0][    1,    3]= 1.0000000000000000e+00  (2)
  KKT[2][0][    1,    4]= 1.0000000000000000e+00  (3)
Component for row 2 and column 1:
This component has not been set.
Component for row 2 and column 2:

  DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements:
    DenseVector "KKT[2][2]" with 1 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
Component for row 3 and column 0:

  GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements:
  KKT[3][0][    2,    1]= 2.2999999999999998e+00  (0)
  KKT[3][0][    2,    2]= 5.5999999999999996e+00  (1)
  KKT[3][0][    2,    3]= 1.1100000000000000e+01  (2)
  KKT[3][0][    2,    4]= 1.3000000000000000e+00  (3)
  KKT[3][0][    1,    1]= 1.1803717741464771e+01  (4)
  KKT[3][0][    1,    2]= 1.1891750367844269e+01  (5)
  KKT[3][0][    1,    3]= 3.4548333741645472e+01  (6)
  KKT[3][0][    1,    4]= 5.2057829831274105e+01  (7)
Component for row 3 and column 1:

  IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00.
Component for row 3 and column 2:
This component has not been set.
Component for row 3 and column 3:

  DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[3][3]" with 2 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
******* KKT SYSTEM *******
(0) KKT[1][1] =   1.252075327001834e-01
(1) KKT[2][1] =  -2.819164373552122e-04
(2) KKT[3][1] =  -2.478127361138700e-01
(3) KKT[4][1] =  -1.441090160803797e-03
(4) KKT[2][2] =   8.950198816513327e-02
(5) KKT[3][2] =  -1.041542894248590e-02
(6) KKT[4][2] =  -6.056820325276031e-05
(7) KKT[3][3] =   5.026073468136304e-01
(8) KKT[4][3] =  -5.324120973710948e-02
(9) KKT[4][4] =   2.917881734104257e-01
(10) KKT[1][1] =   8.258872036417025e-02
(11) KKT[2][2] =   6.660746595625708e+00
(12) KKT[3][3] =   2.244244916828655e-01
(13) KKT[4][4] =   5.713697178604644e+00
(14) KKT[5][5] =   7.488825147158972e+00
(15) KKT[6][6] =   1.759812735605621e+01
(16) KKT[7][1] =   1.000000000000000e+00
(17) KKT[7][2] =   1.000000000000000e+00
(18) KKT[7][3] =   1.000000000000000e+00
(19) KKT[7][4] =   1.000000000000000e+00
(20) KKT[7][7] =  -0.000000000000000e+00
(21) KKT[9][1] =   2.300000000000000e+00
(22) KKT[9][2] =   5.600000000000000e+00
(23) KKT[9][3] =   1.110000000000000e+01
(24) KKT[9][4] =   1.300000000000000e+00
(25) KKT[8][1] =   1.180371774146477e+01
(26) KKT[8][2] =   1.189175036784427e+01
(27) KKT[8][3] =   3.454833374164547e+01
(28) KKT[8][4] =   5.205782983127411e+01
(29) KKT[8][5] =  -1.000000000000000e+00
(30) KKT[9][6] =  -1.000000000000000e+00
(31) KKT[8][8] =  -0.000000000000000e+00
(32) KKT[9][9] =  -0.000000000000000e+00
Right hand side 0 in TSymLinearSolver:
Trhs[    0,    0] = -1.2754763666901675e-15
Trhs[    0,    1] =  1.0437377145292720e-14
Trhs[    0,    2] = -1.3064656507241063e-14
Trhs[    0,    3] =  3.3245521407435780e-14
Trhs[    0,    4] = -1.9949319973733282e-17
Trhs[    0,    5] =  6.5919492087118670e-17
Trhs[    0,    6] =  1.1275702593849246e-17
Trhs[    0,    7] = -1.3877787807814457e-17
Trhs[    0,    8] = -2.7755575615628914e-17
Solution 0 in TSymLinearSolver:
Tsol[    0,    0] = -2.6752637318296076e-15
Tsol[    0,    1] =  3.1956905391411091e-15
Tsol[    0,    2] = -1.1510790137797347e-15
Tsol[    0,    3] =  6.4192790906208209e-16
Tsol[    0,    4] =  8.7685880494218636e-17
Tsol[    0,    5] = -1.7195475957660617e-16
Tsol[    0,    6] = -1.8779450843895642e-15
Tsol[    0,    7] =  6.7661354686961417e-16
Tsol[    0,    8] = -3.0920012505962600e-15
Factorization successful.

CompoundVector "SOL[ 0]" with 4 components:

Component 1:
  DenseVector "SOL[ 0][ 0]" with 4 elements:
  SOL[ 0][ 0][    1]=-2.6752637318296076e-15
  SOL[ 0][ 0][    2]= 3.1956905391411091e-15
  SOL[ 0][ 0][    3]=-1.1510790137797347e-15
  SOL[ 0][ 0][    4]= 6.4192790906208209e-16

Component 2:
  DenseVector "SOL[ 0][ 1]" with 2 elements:
  SOL[ 0][ 1][    1]= 8.7685880494218636e-17
  SOL[ 0][ 1][    2]=-1.7195475957660617e-16

Component 3:
  DenseVector "SOL[ 0][ 2]" with 1 elements:
  SOL[ 0][ 2][    1]=-1.8779450843895642e-15

Component 4:
  DenseVector "SOL[ 0][ 3]" with 2 elements:
  SOL[ 0][ 3][    1]= 6.7661354686961417e-16
  SOL[ 0][ 3][    2]=-3.0920012505962600e-15

CompoundVector "resid" with 8 components:

Component 1:
  DenseVector "resid[ 0]" with 4 elements:
  resid[ 0][    1]= 1.2801116287625635e-18
  resid[ 0][    2]=-9.1276270396123405e-18
  resid[ 0][    3]= 2.2097395527970187e-17
  resid[ 0][    4]=-5.6581800876587263e-18

Component 2:
  DenseVector "resid[ 1]" with 2 elements:
  resid[ 1][    1]= 0.0000000000000000e+00
  resid[ 1][    2]= 0.0000000000000000e+00

Component 3:
  DenseVector "resid[ 2]" with 1 elements:
  resid[ 2][    1]= 8.6736173798840355e-19

Component 4:
  DenseVector "resid[ 3]" with 2 elements:
  resid[ 3][    1]= 7.6327832942979512e-17
  resid[ 3][    2]= 6.9388939039072284e-18

Component 5:
  DenseVector "resid[ 4]" with 4 elements:
  resid[ 4][    1]= 6.9388939039072284e-18
  resid[ 4][    2]=-3.2526065174565133e-19
  resid[ 4][    3]= 0.0000000000000000e+00
  resid[ 4][    4]= 3.4694469519536142e-18

Component 6:
  DenseVector "resid[ 5]" with 0 elements:

Component 7:
  DenseVector "resid[ 6]" with 2 elements:
  resid[ 6][    1]= 7.5894152073985310e-19
  resid[ 6][    2]=-1.8431436932253575e-18

Component 8:
  DenseVector "resid[ 7]" with 0 elements:
max-norm resid_x  2.209740e-17
max-norm resid_s  0.000000e+00
max-norm resid_c  8.673617e-19
max-norm resid_d  7.632783e-17
max-norm resid_zL 6.938894e-18
max-norm resid_zU 0.000000e+00
max-norm resid_vL 1.843144e-18
max-norm resid_vU 0.000000e+00
nrm_rhs = 2.97e-02 nrm_sol = 2.96e-01 nrm_resid = 7.63e-17
residual_ratio = 2.343958e-16
*** Step Calculated for Iteration: 4

CompoundVector "delta" with 8 components:

Component 1:
  DenseVector "delta[ 0]" with 4 elements:
  delta[ 0][    1]= 3.2043419447663042e-02
  delta[ 0][    2]=-3.4467436442663688e-02
  delta[ 0][    3]= 8.5009307475792904e-03
  delta[ 0][    4]=-6.0769137525786459e-03

Component 2:
  DenseVector "delta[ 1]" with 2 elements:
  delta[ 1][    1]=-5.4324794480246942e-02
  delta[ 1][    2]=-3.2857435929513762e-02

Component 3:
  DenseVector "delta[ 2]" with 1 elements:
  delta[ 2][    1]=-1.7717710171045595e-02

Component 4:
  DenseVector "delta[ 3]" with 2 elements:
  delta[ 3][    1]=-5.6281609700725051e-03
  delta[ 3][    2]= 1.3124229943605983e-02

Component 5:
  DenseVector "delta[ 4]" with 4 elements:
  delta[ 4][    1]=-5.2041341128007491e-02
  delta[ 4][    2]=-1.4372642141798817e-02
  delta[ 4][    3]=-6.9486863838561300e-02
  delta[ 4][    4]=-2.9594458223918602e-01

Component 6:
  DenseVector "delta[ 5]" with 0 elements:

Component 7:
  DenseVector "delta[ 6]" with 2 elements:
  delta[ 6][    1]= 5.6279624743137925e-03
  delta[ 6][    2]=-1.3124428439364641e-02

Component 8:
  DenseVector "delta[ 7]" with 0 elements:

**************************************************
*** Finding Acceptable Trial Point for Iteration 4:
**************************************************

--> Starting line search in iteration 4 <--
Mu has changed in line search - resetting watchdog counters.
Acceptable Check:
  overall_error =  2.9842353507916034e-02   acceptable_tol_             =  2.5000000000000002e-06
  dual_inf      =  3.9825445417251970e-05   acceptable_dual_inf_tol_    =  1.0000000000000000e+10
  constr_viol   =  0.0000000000000000e+00   acceptable_constr_viol_tol_ =  1.0000000000000000e-02
  compl_inf     =  2.9842353507916034e-02   acceptable_compl_inf_tol_   =  1.0000000000000000e-02
  curr_obj_val_ =  2.9945312615447051e+01   last_obj_val                =  2.9955742525783506e+01
  fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) =  3.4829859585687424e-04 acceptable_obj_change_tol_ =  1.0000000000000000e+20
test iter = 4
The current filter has 0 entries.
Relative step size for delta_x = 3.323022e-02
minimal step size ALPHA_MIN = 2.038711E-13
Starting checks for alpha (primal) = 9.93e-01
Checking acceptability for trial step size alpha_primal_test= 9.928710e-01:
  New values of barrier function     =  2.9900084025862331e+01  (reference  2.9947439563499405e+01):
  New values of constraint violation =  1.8956964213234784e-04  (reference  2.0173667046208266e-05):
reference_theta = 2.017367e-05 reference_gradBarrTDelta = -4.947652e-02
Checking Armijo Condition...
Succeeded...
Checking filter acceptability...
Succeeded...
reference_theta = 2.017367e-05 reference_gradBarrTDelta = -4.947652e-02
Convergence Check:
  overall_error =  1.1527623040680002e-02   IpData().tol()   =  2.4999999999999999e-08
  dual_inf      =  1.1527623040680002e-02   dual_inf_tol_    =  1.0000000000000000e+00
  constr_viol   =  1.8145491853971407e-04   constr_viol_tol_ =  1.0000000000000000e-04
  compl_inf     =  2.6652207192442525e-03   compl_inf_tol_   =  1.0000000000000000e-04
obj val update iter = 5
Acceptable Check:
  overall_error =  1.1527623040680002e-02   acceptable_tol_             =  2.5000000000000002e-06
  dual_inf      =  1.1527623040680002e-02   acceptable_dual_inf_tol_    =  1.0000000000000000e+10
  constr_viol   =  1.8145491853971407e-04   acceptable_constr_viol_tol_ =  1.0000000000000000e-02
  compl_inf     =  2.6652207192442525e-03   acceptable_compl_inf_tol_   =  1.0000000000000000e-02
  curr_obj_val_ =  2.9895751787428928e+01   last_obj_val                =  2.9945312615447051e+01
  fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) =  1.6577883162303742e-03 acceptable_obj_change_tol_ =  1.0000000000000000e+20
test iter = 5

**************************************************
*** Update HessianMatrix for Iteration 5:
**************************************************



**************************************************
*** Summary of Iteration: 5:
**************************************************

iter    objective    inf_pr   inf_du lg(mu)  ||d||  lg(rg) alpha_du alpha_pr  ls
   5  2.9895752e+01 1.81e-04 1.15e-02  -3.8 5.43e-02    -  9.54e-01 9.93e-01f  1 

**************************************************
*** Beginning Iteration 5 from the following point:
**************************************************

Current barrier parameter mu = 1.5042412372345582e-04
Current fraction-to-the-boundary parameter tau = 9.9984957587627654e-01

||curr_x||_inf   = 6.3292803535819031e-01
||curr_s||_inf   = 2.1000007904723592e+01
||curr_y_c||_inf = 1.8379039893635380e+01
||curr_y_d||_inf = 5.8276599987012268e-01
||curr_z_L||_inf = 2.3428289735127311e-01
||curr_z_U||_inf = 0.0000000000000000e+00
||curr_v_L||_inf = 5.8327862064003400e-01
||curr_v_U||_inf = 0.0000000000000000e+00

||delta_x||_inf   = 3.4467436442663688e-02
||delta_s||_inf   = 5.4324794480246942e-02
||delta_y_c||_inf = 1.7717710171045595e-02
||delta_y_d||_inf = 1.3124229943605983e-02
||delta_z_L||_inf = 2.9594458223918602e-01
||delta_z_U||_inf = 0.0000000000000000e+00
||delta_v_L||_inf = 1.3124428439364641e-02
||delta_v_U||_inf = 0.0000000000000000e+00
DenseVector "curr_x" with 4 elements:
curr_x[    1]= 6.3292803535819031e-01
curr_x[    2]= 3.0100908083493735e-03
curr_x[    3]= 3.1177153332875474e-01
curr_x[    4]= 5.2290340504705574e-02
DenseVector "curr_s" with 2 elements:
curr_s[    1]= 2.1000007904723592e+01
curr_s[    2]= 5.0012324524558895e+00
DenseVector "curr_y_c" with 1 elements:
curr_y_c[    1]=-1.8379039893635380e+01
DenseVector "curr_y_d" with 2 elements:
curr_y_d[    1]=-4.0957720187156110e-01
curr_y_d[    2]=-5.8276599987012268e-01
DenseVector "curr_slack_x_L" with 4 elements:
curr_slack_x_L[    1]= 6.3292804535819036e-01
curr_slack_x_L[    2]= 3.0101008083493735e-03
curr_slack_x_L[    3]= 3.1177154332875473e-01
curr_slack_x_L[    4]= 5.2290350504705575e-02
DenseVector "curr_slack_x_U" with 0 elements:
DenseVector "curr_z_L" with 4 elements:
curr_z_L[    1]= 7.4678295044414145e-06
curr_z_L[    2]= 2.3428289735127311e-01
curr_z_L[    3]= 1.7975022750407604e-03
curr_z_L[    4]= 5.0969647239301086e-02
DenseVector "curr_z_U" with 0 elements:
DenseVector "curr_slack_s_L" with 2 elements:
curr_slack_s_L[    1]= 8.1147235917455873e-06
curr_slack_s_L[    2]= 1.2325024558892395e-03
DenseVector "curr_slack_s_U" with 0 elements:
DenseVector "curr_v_L" with 2 elements:
curr_v_L[    1]= 4.0935738614962902e-01
curr_v_L[    2]= 5.8327862064003400e-01
DenseVector "curr_v_U" with 0 elements:
DenseVector "curr_grad_lag_x" with 4 elements:
curr_grad_lag_x[    1]=-2.0670352531831845e-03
curr_grad_lag_x[    2]=-5.1559855680455291e-04
curr_grad_lag_x[    3]=-2.9063595997287778e-03
curr_grad_lag_x[    4]=-1.1527623040680002e-02
DenseVector "curr_grad_lag_s" with 2 elements:
curr_grad_lag_s[    1]= 2.1981572193208176e-04
curr_grad_lag_s[    2]=-5.1262076991132055e-04

CompoundVector "delta" with 8 components:

Component 1:
  DenseVector "delta[ 0]" with 4 elements:
  delta[ 0][    1]= 3.2043419447663042e-02
  delta[ 0][    2]=-3.4467436442663688e-02
  delta[ 0][    3]= 8.5009307475792904e-03
  delta[ 0][    4]=-6.0769137525786459e-03

Component 2:
  DenseVector "delta[ 1]" with 2 elements:
  delta[ 1][    1]=-5.4324794480246942e-02
  delta[ 1][    2]=-3.2857435929513762e-02

Component 3:
  DenseVector "delta[ 2]" with 1 elements:
  delta[ 2][    1]=-1.7717710171045595e-02

Component 4:
  DenseVector "delta[ 3]" with 2 elements:
  delta[ 3][    1]=-5.6281609700725051e-03
  delta[ 3][    2]= 1.3124229943605983e-02

Component 5:
  DenseVector "delta[ 4]" with 4 elements:
  delta[ 4][    1]=-5.2041341128007491e-02
  delta[ 4][    2]=-1.4372642141798817e-02
  delta[ 4][    3]=-6.9486863838561300e-02
  delta[ 4][    4]=-2.9594458223918602e-01

Component 6:
  DenseVector "delta[ 5]" with 0 elements:

Component 7:
  DenseVector "delta[ 6]" with 2 elements:
  delta[ 6][    1]= 5.6279624743137925e-03
  delta[ 6][    2]=-1.3124428439364641e-02

Component 8:
  DenseVector "delta[ 7]" with 0 elements:


***Current NLP Values for Iteration 5:

                                   (scaled)                 (unscaled)
Objective...............:   2.9895751787428928e+01    2.9895751787428928e+01
Dual infeasibility......:   1.1527623040680002e-02    1.1527623040680002e-02
Constraint violation....:   1.8145491853971407e-04    1.8145491853971407e-04
Complementarity.........:   2.6652207192442525e-03    2.6652207192442525e-03
Overall NLP error.......:   1.1527623040680002e-02    1.1527623040680002e-02

DenseVector "grad_f" with 4 elements:
grad_f[    1]= 2.4550000000000001e+01
grad_f[    2]= 2.6750000000000000e+01
grad_f[    3]= 3.9000000000000000e+01
grad_f[    4]= 4.0500000000000000e+01
DenseVector "curr_c" with 1 elements:
curr_c[    1]= 0.0000000000000000e+00
DenseVector "curr_d" with 2 elements:
curr_d[    1]= 2.0999818335081461e+01
curr_d[    2]= 5.0012324524558887e+00
DenseVector "curr_d - curr_s" with 2 elements:
curr_d - curr_s[    1]=-1.8956964213145966e-04
curr_d - curr_s[    2]=-8.8817841970012523e-16

GenTMatrix "jac_c" of dimension 1 by 4 with 4 nonzero elements:
jac_c[    1,    1]= 1.0000000000000000e+00  (0)
jac_c[    1,    2]= 1.0000000000000000e+00  (1)
jac_c[    1,    3]= 1.0000000000000000e+00  (2)
jac_c[    1,    4]= 1.0000000000000000e+00  (3)

GenTMatrix "jac_d" of dimension 2 by 4 with 8 nonzero elements:
jac_d[    2,    1]= 2.2999999999999998e+00  (0)
jac_d[    2,    2]= 5.5999999999999996e+00  (1)
jac_d[    2,    3]= 1.1100000000000000e+01  (2)
jac_d[    2,    4]= 1.3000000000000000e+00  (3)
jac_d[    1,    1]= 1.1799137871942602e+01  (4)
jac_d[    1,    2]= 1.1899351785272966e+01  (5)
jac_d[    1,    3]= 3.4556040474072297e+01  (6)
jac_d[    1,    4]= 5.2063254948994434e+01  (7)

SymTMatrix "W" of dimension 4 with 10 nonzero elements:
W[    1,    1]= 1.2305961857978347e-01  (0)
W[    2,    1]=-2.2336062622908545e-05  (1)
W[    3,    1]=-2.4961101138400910e-01  (2)
W[    4,    1]=-1.2661541401533249e-03  (3)
W[    2,    2]= 8.8201245092131869e-02  (4)
W[    3,    2]=-8.0553529514881437e-04  (5)
W[    4,    2]=-4.0860851584115736e-06  (6)
W[    3,    3]= 5.1440221112556306e-01  (7)
W[    4,    3]=-4.5663009914121054e-02  (8)
W[    4,    4]= 2.8758319842751201e-01  (9)



**************************************************
*** Update Barrier Parameter for Iteration 5:
**************************************************

Optimality Error for Barrier Sub-problem = 1.152762e-02
Barrier Parameter: 1.504241e-04

**************************************************
*** Solving the Primal Dual System for Iteration 5:
**************************************************

Solving system with delta_x=0.000000e+00 delta_s=0.000000e+00
                    delta_c=0.000000e+00 delta_d=0.000000e+00

CompoundVector "RHS[ 0]" with 4 components:

Component 1:
  DenseVector "RHS[ 0][ 0]" with 4 elements:
  RHS[ 0][ 0][    1]=-2.2972297815884190e-03
  RHS[ 0][ 0][    2]= 1.8379418202100575e-01
  RHS[ 0][ 0][    3]=-1.5913377112485895e-03
  RHS[ 0][ 0][    4]= 3.6565316668182600e-02

Component 2:
  DenseVector "RHS[ 0][ 1]" with 2 elements:
  RHS[ 0][ 1][    1]=-1.8127606721960777e+01
  RHS[ 0][ 1][    2]= 4.6071827400093157e-01

Component 3:
  DenseVector "RHS[ 0][ 2]" with 1 elements:
  RHS[ 0][ 2][    1]= 0.0000000000000000e+00

Component 4:
  DenseVector "RHS[ 0][ 3]" with 2 elements:
  RHS[ 0][ 3][    1]=-1.8956964213145966e-04
  RHS[ 0][ 3][    2]=-8.8817841970012523e-16

CompoundSymMatrix "KKT" with 4 rows and columns components:
Component for row 0 and column 0:

  SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms:
  Term 0 with factor  1.0000000000000000e+00 and the following matrix:

    SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements:
    Term: 0[    1,    1]= 1.2305961857978347e-01  (0)
    Term: 0[    2,    1]=-2.2336062622908545e-05  (1)
    Term: 0[    3,    1]=-2.4961101138400910e-01  (2)
    Term: 0[    4,    1]=-1.2661541401533249e-03  (3)
    Term: 0[    2,    2]= 8.8201245092131869e-02  (4)
    Term: 0[    3,    2]=-8.0553529514881437e-04  (5)
    Term: 0[    4,    2]=-4.0860851584115736e-06  (6)
    Term: 0[    3,    3]= 5.1440221112556306e-01  (7)
    Term: 0[    4,    3]=-4.5663009914121054e-02  (8)
    Term: 0[    4,    4]= 2.8758319842751201e-01  (9)
  Term 1 with factor  1.0000000000000000e+00 and the following matrix:

    DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements:
      DenseVector "Term: 1" with 4 elements:
      Term: 1[    1]= 1.1798860169350177e-05
      Term: 1[    2]= 7.7832242927354017e+01
      Term: 1[    3]= 5.7654468905308093e-03
      Term: 1[    4]= 9.7474288749918325e-01
Component for row 1 and column 0:
This component has not been set.
Component for row 1 and column 1:

  DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[1][1]" with 2 elements:
    KKT[1][1][    1]= 5.0446251375220374e+04
    KKT[1][1][    2]= 4.7324743074787926e+02
Component for row 2 and column 0:

  GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements:
  KKT[2][0][    1,    1]= 1.0000000000000000e+00  (0)
  KKT[2][0][    1,    2]= 1.0000000000000000e+00  (1)
  KKT[2][0][    1,    3]= 1.0000000000000000e+00  (2)
  KKT[2][0][    1,    4]= 1.0000000000000000e+00  (3)
Component for row 2 and column 1:
This component has not been set.
Component for row 2 and column 2:

  DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements:
    DenseVector "KKT[2][2]" with 1 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
Component for row 3 and column 0:

  GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements:
  KKT[3][0][    2,    1]= 2.2999999999999998e+00  (0)
  KKT[3][0][    2,    2]= 5.5999999999999996e+00  (1)
  KKT[3][0][    2,    3]= 1.1100000000000000e+01  (2)
  KKT[3][0][    2,    4]= 1.3000000000000000e+00  (3)
  KKT[3][0][    1,    1]= 1.1799137871942602e+01  (4)
  KKT[3][0][    1,    2]= 1.1899351785272966e+01  (5)
  KKT[3][0][    1,    3]= 3.4556040474072297e+01  (6)
  KKT[3][0][    1,    4]= 5.2063254948994434e+01  (7)
Component for row 3 and column 1:

  IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00.
Component for row 3 and column 2:
This component has not been set.
Component for row 3 and column 3:

  DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[3][3]" with 2 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
******* KKT SYSTEM *******
(0) KKT[1][1] =   1.230596185797835e-01
(1) KKT[2][1] =  -2.233606262290854e-05
(2) KKT[3][1] =  -2.496110113840091e-01
(3) KKT[4][1] =  -1.266154140153325e-03
(4) KKT[2][2] =   8.820124509213187e-02
(5) KKT[3][2] =  -8.055352951488144e-04
(6) KKT[4][2] =  -4.086085158411574e-06
(7) KKT[3][3] =   5.144022111255631e-01
(8) KKT[4][3] =  -4.566300991412105e-02
(9) KKT[4][4] =   2.875831984275120e-01
(10) KKT[1][1] =   1.179886016935018e-05
(11) KKT[2][2] =   7.783224292735402e+01
(12) KKT[3][3] =   5.765446890530809e-03
(13) KKT[4][4] =   9.747428874991833e-01
(14) KKT[5][5] =   5.044625137522037e+04
(15) KKT[6][6] =   4.732474307478793e+02
(16) KKT[7][1] =   1.000000000000000e+00
(17) KKT[7][2] =   1.000000000000000e+00
(18) KKT[7][3] =   1.000000000000000e+00
(19) KKT[7][4] =   1.000000000000000e+00
(20) KKT[7][7] =  -0.000000000000000e+00
(21) KKT[9][1] =   2.300000000000000e+00
(22) KKT[9][2] =   5.600000000000000e+00
(23) KKT[9][3] =   1.110000000000000e+01
(24) KKT[9][4] =   1.300000000000000e+00
(25) KKT[8][1] =   1.179913787194260e+01
(26) KKT[8][2] =   1.189935178527297e+01
(27) KKT[8][3] =   3.455604047407230e+01
(28) KKT[8][4] =   5.206325494899443e+01
(29) KKT[8][5] =  -1.000000000000000e+00
(30) KKT[9][6] =  -1.000000000000000e+00
(31) KKT[8][8] =  -0.000000000000000e+00
(32) KKT[9][9] =  -0.000000000000000e+00
Right hand side 0 in TSymLinearSolver:
Trhs[    0,    0] = -2.2972297815884190e-03
Trhs[    0,    1] =  1.8379418202100575e-01
Trhs[    0,    2] = -1.5913377112485895e-03
Trhs[    0,    3] =  3.6565316668182600e-02
Trhs[    0,    4] = -1.8127606721960777e+01
Trhs[    0,    5] =  4.6071827400093157e-01
Trhs[    0,    6] =  0.0000000000000000e+00
Trhs[    0,    7] = -1.8956964213145966e-04
Trhs[    0,    8] = -8.8817841970012523e-16
HSL_MA97: delays 0, nfactor 45.000000, nflops 285.000000, maxfront 9
Ma97SolverInterface::Factorization: ma97_factor_solve took      0.000
Solution 0 in TSymLinearSolver:
Tsol[    0,    0] = -2.1255445951985272e-03
Tsol[    0,    1] =  2.4814919672343319e-03
Tsol[    0,    2] = -7.7307156769926126e-04
Tsol[    0,    3] =  4.1712419566345310e-04
Tsol[    0,    4] = -3.5932725767762099e-04
Tsol[    0,    5] =  9.6876950045722337e-04
Tsol[    0,    6] = -7.5948275296856445e-03
Tsol[    0,    7] =  8.9355518692357805e-04
Tsol[    0,    8] = -2.2505969226441422e-03
Factorization successful.

CompoundVector "SOL[ 0]" with 4 components:

Component 1:
  DenseVector "SOL[ 0][ 0]" with 4 elements:
  SOL[ 0][ 0][    1]=-2.1255445951985272e-03
  SOL[ 0][ 0][    2]= 2.4814919672343319e-03
  SOL[ 0][ 0][    3]=-7.7307156769926126e-04
  SOL[ 0][ 0][    4]= 4.1712419566345310e-04

Component 2:
  DenseVector "SOL[ 0][ 1]" with 2 elements:
  SOL[ 0][ 1][    1]=-3.5932725767762099e-04
  SOL[ 0][ 1][    2]= 9.6876950045722337e-04

Component 3:
  DenseVector "SOL[ 0][ 2]" with 1 elements:
  SOL[ 0][ 2][    1]=-7.5948275296856445e-03

Component 4:
  DenseVector "SOL[ 0][ 3]" with 2 elements:
  SOL[ 0][ 3][    1]= 8.9355518692357805e-04
  SOL[ 0][ 3][    2]=-2.2505969226441422e-03
Number of trial factorizations performed: 1
Perturbation parameters: delta_x=0.000000e+00 delta_s=0.000000e+00
                         delta_c=0.000000e+00 delta_d=0.000000e+00

CompoundVector "resid" with 8 components:

Component 1:
  DenseVector "resid[ 0]" with 4 elements:
  resid[ 0][    1]=-4.0425679297129147e-12
  resid[ 0][    2]=-3.1576412491685080e-12
  resid[ 0][    3]=-2.0984502763915502e-11
  resid[ 0][    4]=-3.4087869679733096e-11

Component 2:
  DenseVector "resid[ 1]" with 2 elements:
  resid[ 1][    1]=-1.3747683547116196e-16
  resid[ 1][    2]= 2.8622937353617317e-17

Component 3:
  DenseVector "resid[ 2]" with 1 elements:
  resid[ 2][    1]=-3.5236570605778894e-18

Component 4:
  DenseVector "resid[ 3]" with 2 elements:
  resid[ 3][    1]= 2.6020852139652106e-18
  resid[ 3][    2]=-1.3010426069826053e-18

Component 5:
  DenseVector "resid[ 4]" with 4 elements:
  resid[ 4][    1]= 0.0000000000000000e+00
  resid[ 4][    2]= 3.3881317890172014e-21
  resid[ 4][    3]=-5.4210108624275222e-20
  resid[ 4][    4]= 0.0000000000000000e+00

Component 6:
  DenseVector "resid[ 5]" with 0 elements:

Component 7:
  DenseVector "resid[ 6]" with 2 elements:
  resid[ 6][    1]= 0.0000000000000000e+00
  resid[ 6][    2]= 0.0000000000000000e+00

Component 8:
  DenseVector "resid[ 7]" with 0 elements:
max-norm resid_x  3.408787e-11
max-norm resid_s  1.374768e-16
max-norm resid_c  3.523657e-18
max-norm resid_d  2.602085e-18
max-norm resid_zL 5.421011e-20
max-norm resid_zU 0.000000e+00
max-norm resid_vL 0.000000e+00
max-norm resid_vU 0.000000e+00
nrm_rhs = 1.15e-02 nrm_sol = 4.77e-02 nrm_resid = 3.41e-11
residual_ratio = 5.756728e-10

CompoundVector "RHS[ 0]" with 4 components:

Component 1:
  DenseVector "RHS[ 0][ 0]" with 4 elements:
  RHS[ 0][ 0][    1]=-4.0425679297129147e-12
  RHS[ 0][ 0][    2]=-3.1576401235810261e-12
  RHS[ 0][ 0][    3]=-2.0984502937793171e-11
  RHS[ 0][ 0][    4]=-3.4087869679733096e-11

Component 2:
  DenseVector "RHS[ 0][ 1]" with 2 elements:
  RHS[ 0][ 1][    1]=-1.3747683547116196e-16
  RHS[ 0][ 1][    2]= 2.8622937353617317e-17

Component 3:
  DenseVector "RHS[ 0][ 2]" with 1 elements:
  RHS[ 0][ 2][    1]=-3.5236570605778894e-18

Component 4:
  DenseVector "RHS[ 0][ 3]" with 2 elements:
  RHS[ 0][ 3][    1]= 2.6020852139652106e-18
  RHS[ 0][ 3][    2]=-1.3010426069826053e-18

CompoundSymMatrix "KKT" with 4 rows and columns components:
Component for row 0 and column 0:

  SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms:
  Term 0 with factor  1.0000000000000000e+00 and the following matrix:

    SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements:
    Term: 0[    1,    1]= 1.2305961857978347e-01  (0)
    Term: 0[    2,    1]=-2.2336062622908545e-05  (1)
    Term: 0[    3,    1]=-2.4961101138400910e-01  (2)
    Term: 0[    4,    1]=-1.2661541401533249e-03  (3)
    Term: 0[    2,    2]= 8.8201245092131869e-02  (4)
    Term: 0[    3,    2]=-8.0553529514881437e-04  (5)
    Term: 0[    4,    2]=-4.0860851584115736e-06  (6)
    Term: 0[    3,    3]= 5.1440221112556306e-01  (7)
    Term: 0[    4,    3]=-4.5663009914121054e-02  (8)
    Term: 0[    4,    4]= 2.8758319842751201e-01  (9)
  Term 1 with factor  1.0000000000000000e+00 and the following matrix:

    DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements:
      DenseVector "Term: 1" with 4 elements:
      Term: 1[    1]= 1.1798860169350177e-05
      Term: 1[    2]= 7.7832242927354017e+01
      Term: 1[    3]= 5.7654468905308093e-03
      Term: 1[    4]= 9.7474288749918325e-01
Component for row 1 and column 0:
This component has not been set.
Component for row 1 and column 1:

  DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[1][1]" with 2 elements:
    KKT[1][1][    1]= 5.0446251375220374e+04
    KKT[1][1][    2]= 4.7324743074787926e+02
Component for row 2 and column 0:

  GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements:
  KKT[2][0][    1,    1]= 1.0000000000000000e+00  (0)
  KKT[2][0][    1,    2]= 1.0000000000000000e+00  (1)
  KKT[2][0][    1,    3]= 1.0000000000000000e+00  (2)
  KKT[2][0][    1,    4]= 1.0000000000000000e+00  (3)
Component for row 2 and column 1:
This component has not been set.
Component for row 2 and column 2:

  DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements:
    DenseVector "KKT[2][2]" with 1 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
Component for row 3 and column 0:

  GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements:
  KKT[3][0][    2,    1]= 2.2999999999999998e+00  (0)
  KKT[3][0][    2,    2]= 5.5999999999999996e+00  (1)
  KKT[3][0][    2,    3]= 1.1100000000000000e+01  (2)
  KKT[3][0][    2,    4]= 1.3000000000000000e+00  (3)
  KKT[3][0][    1,    1]= 1.1799137871942602e+01  (4)
  KKT[3][0][    1,    2]= 1.1899351785272966e+01  (5)
  KKT[3][0][    1,    3]= 3.4556040474072297e+01  (6)
  KKT[3][0][    1,    4]= 5.2063254948994434e+01  (7)
Component for row 3 and column 1:

  IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00.
Component for row 3 and column 2:
This component has not been set.
Component for row 3 and column 3:

  DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[3][3]" with 2 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
******* KKT SYSTEM *******
(0) KKT[1][1] =   1.230596185797835e-01
(1) KKT[2][1] =  -2.233606262290854e-05
(2) KKT[3][1] =  -2.496110113840091e-01
(3) KKT[4][1] =  -1.266154140153325e-03
(4) KKT[2][2] =   8.820124509213187e-02
(5) KKT[3][2] =  -8.055352951488144e-04
(6) KKT[4][2] =  -4.086085158411574e-06
(7) KKT[3][3] =   5.144022111255631e-01
(8) KKT[4][3] =  -4.566300991412105e-02
(9) KKT[4][4] =   2.875831984275120e-01
(10) KKT[1][1] =   1.179886016935018e-05
(11) KKT[2][2] =   7.783224292735402e+01
(12) KKT[3][3] =   5.765446890530809e-03
(13) KKT[4][4] =   9.747428874991833e-01
(14) KKT[5][5] =   5.044625137522037e+04
(15) KKT[6][6] =   4.732474307478793e+02
(16) KKT[7][1] =   1.000000000000000e+00
(17) KKT[7][2] =   1.000000000000000e+00
(18) KKT[7][3] =   1.000000000000000e+00
(19) KKT[7][4] =   1.000000000000000e+00
(20) KKT[7][7] =  -0.000000000000000e+00
(21) KKT[9][1] =   2.300000000000000e+00
(22) KKT[9][2] =   5.600000000000000e+00
(23) KKT[9][3] =   1.110000000000000e+01
(24) KKT[9][4] =   1.300000000000000e+00
(25) KKT[8][1] =   1.179913787194260e+01
(26) KKT[8][2] =   1.189935178527297e+01
(27) KKT[8][3] =   3.455604047407230e+01
(28) KKT[8][4] =   5.206325494899443e+01
(29) KKT[8][5] =  -1.000000000000000e+00
(30) KKT[9][6] =  -1.000000000000000e+00
(31) KKT[8][8] =  -0.000000000000000e+00
(32) KKT[9][9] =  -0.000000000000000e+00
Right hand side 0 in TSymLinearSolver:
Trhs[    0,    0] = -4.0425679297129147e-12
Trhs[    0,    1] = -3.1576401235810261e-12
Trhs[    0,    2] = -2.0984502937793171e-11
Trhs[    0,    3] = -3.4087869679733096e-11
Trhs[    0,    4] = -1.3747683547116196e-16
Trhs[    0,    5] =  2.8622937353617317e-17
Trhs[    0,    6] = -3.5236570605778894e-18
Trhs[    0,    7] =  2.6020852139652106e-18
Trhs[    0,    8] = -1.3010426069826053e-18
Solution 0 in TSymLinearSolver:
Tsol[    0,    0] = -1.0244044505623393e-14
Tsol[    0,    1] =  1.2128908198754586e-14
Tsol[    0,    2] = -4.2752745139531924e-15
Tsol[    0,    3] =  2.3868871637605245e-15
Tsol[    0,    4] = -1.4794345708084938e-17
Tsol[    0,    5] =  9.2908007035130885e-18
Tsol[    0,    6] =  4.7518840430195424e-12
Tsol[    0,    7] = -7.4618180568649441e-13
Tsol[    0,    8] =  4.3682246251745416e-15
Factorization successful.

CompoundVector "SOL[ 0]" with 4 components:

Component 1:
  DenseVector "SOL[ 0][ 0]" with 4 elements:
  SOL[ 0][ 0][    1]=-1.0244044505623393e-14
  SOL[ 0][ 0][    2]= 1.2128908198754586e-14
  SOL[ 0][ 0][    3]=-4.2752745139531924e-15
  SOL[ 0][ 0][    4]= 2.3868871637605245e-15

Component 2:
  DenseVector "SOL[ 0][ 1]" with 2 elements:
  SOL[ 0][ 1][    1]=-1.4794345708084938e-17
  SOL[ 0][ 1][    2]= 9.2908007035130885e-18

Component 3:
  DenseVector "SOL[ 0][ 2]" with 1 elements:
  SOL[ 0][ 2][    1]= 4.7518840430195424e-12

Component 4:
  DenseVector "SOL[ 0][ 3]" with 2 elements:
  SOL[ 0][ 3][    1]=-7.4618180568649441e-13
  SOL[ 0][ 3][    2]= 4.3682246251745416e-15

CompoundVector "resid" with 8 components:

Component 1:
  DenseVector "resid[ 0]" with 4 elements:
  resid[ 0][    1]= 4.3368086899420177e-19
  resid[ 0][    2]= 1.3010426069826053e-18
  resid[ 0][    3]= 3.0357660829594124e-18
  resid[ 0][    4]= 1.7347234759768071e-18

Component 2:
  DenseVector "resid[ 1]" with 2 elements:
  resid[ 1][    1]= 0.0000000000000000e+00
  resid[ 1][    2]= 0.0000000000000000e+00

Component 3:
  DenseVector "resid[ 2]" with 1 elements:
  resid[ 2][    1]= 5.4210108624275222e-20

Component 4:
  DenseVector "resid[ 3]" with 2 elements:
  resid[ 3][    1]= 5.2041704279304213e-18
  resid[ 3][    2]=-2.1684043449710089e-19

Component 5:
  DenseVector "resid[ 4]" with 4 elements:
  resid[ 4][    1]= 0.0000000000000000e+00
  resid[ 4][    2]= 1.0164395367051604e-20
  resid[ 4][    3]= 5.4210108624275222e-20
  resid[ 4][    4]=-4.3368086899420177e-19

Component 6:
  DenseVector "resid[ 5]" with 0 elements:

Component 7:
  DenseVector "resid[ 6]" with 2 elements:
  resid[ 6][    1]= 1.5359089613884618e-20
  resid[ 6][    2]=-2.1175823681357508e-21

Component 8:
  DenseVector "resid[ 7]" with 0 elements:
max-norm resid_x  3.035766e-18
max-norm resid_s  0.000000e+00
max-norm resid_c  5.421011e-20
max-norm resid_d  5.204170e-18
max-norm resid_zL 4.336809e-19
max-norm resid_zU 0.000000e+00
max-norm resid_vL 1.535909e-20
max-norm resid_vU 0.000000e+00
nrm_rhs = 1.15e-02 nrm_sol = 4.77e-02 nrm_resid = 5.20e-18
residual_ratio = 8.788754e-17
*** Step Calculated for Iteration: 5

CompoundVector "delta" with 8 components:

Component 1:
  DenseVector "delta[ 0]" with 4 elements:
  delta[ 0][    1]= 2.1255445951882833e-03
  delta[ 0][    2]=-2.4814919672222031e-03
  delta[ 0][    3]= 7.7307156769498603e-04
  delta[ 0][    4]=-4.1712419566106623e-04

Component 2:
  DenseVector "delta[ 1]" with 2 elements:
  delta[ 1][    1]= 3.5932725767760619e-04
  delta[ 1][    2]=-9.6876950045721405e-04

Component 3:
  DenseVector "delta[ 2]" with 1 elements:
  delta[ 2][    1]= 7.5948275344375283e-03

Component 4:
  DenseVector "delta[ 3]" with 2 elements:
  delta[ 3][    1]=-8.9355518766975981e-04
  delta[ 3][    2]= 2.2505969226485102e-03

Component 5:
  DenseVector "delta[ 4]" with 4 elements:
  delta[ 4][    1]= 2.3017095364300934e-04
  delta[ 4][    2]= 8.8303065415470186e-03
  delta[ 4][    3]=-1.3194774873050760e-03
  delta[ 4][    4]=-4.7686349361696918e-02

Component 6:
  DenseVector "delta[ 5]" with 0 elements:

Component 7:
  DenseVector "delta[ 6]" with 2 elements:
  delta[ 6][    1]= 1.1133724138430788e-03
  delta[ 6][    2]=-2.7632161883185936e-03

Component 8:
  DenseVector "delta[ 7]" with 0 elements:

**************************************************
*** Finding Acceptable Trial Point for Iteration 5:
**************************************************

--> Starting line search in iteration 5 <--
Acceptable Check:
  overall_error =  1.1527623040680002e-02   acceptable_tol_             =  2.5000000000000002e-06
  dual_inf      =  1.1527623040680002e-02   acceptable_dual_inf_tol_    =  1.0000000000000000e+10
  constr_viol   =  1.8145491853971407e-04   acceptable_constr_viol_tol_ =  1.0000000000000000e-02
  compl_inf     =  2.6652207192442525e-03   acceptable_compl_inf_tol_   =  1.0000000000000000e-02
  curr_obj_val_ =  2.9895751787428928e+01   last_obj_val                =  2.9945312615447051e+01
  fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) =  1.6577883162303742e-03 acceptable_obj_change_tol_ =  1.0000000000000000e+20
test iter = 5
The current filter has 0 entries.
Relative step size for delta_x = 2.474045e-03
minimal step size ALPHA_MIN = 1.287858E-11
Starting checks for alpha (primal) = 1.00e+00
Checking acceptability for trial step size alpha_primal_test= 1.000000e+00:
  New values of barrier function     =  2.9899062868183599e+01  (reference  2.9900084025862331e+01):
  New values of constraint violation =  8.1739483448473038e-07  (reference  1.8956964213234784e-04):
reference_theta = 1.895696e-04 reference_gradBarrTDelta = -7.359879e-03
Checking sufficient reduction...
Succeeded...
Checking filter acceptability...
Succeeded...
reference_theta = 1.895696e-04 reference_gradBarrTDelta = -7.359879e-03
Convergence Check:
  overall_error =  1.7031525384496649e-04   IpData().tol()   =  2.4999999999999999e-08
  dual_inf      =  9.7945439498682563e-07   dual_inf_tol_    =  1.0000000000000000e+00
  constr_viol   =  0.0000000000000000e+00   constr_viol_tol_ =  1.0000000000000000e-04
  compl_inf     =  1.7031525384496649e-04   compl_inf_tol_   =  1.0000000000000000e-04
obj val update iter = 6
Acceptable Check:
  overall_error =  1.7031525384496649e-04   acceptable_tol_             =  2.5000000000000002e-06
  dual_inf      =  9.7945439498682563e-07   acceptable_dual_inf_tol_    =  1.0000000000000000e+10
  constr_viol   =  0.0000000000000000e+00   acceptable_constr_viol_tol_ =  1.0000000000000000e-02
  compl_inf     =  1.7031525384496649e-04   acceptable_compl_inf_tol_   =  1.0000000000000000e-02
  curr_obj_val_ =  2.9894810258333436e+01   last_obj_val                =  2.9895751787428928e+01
  fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) =  3.1494733947324012e-05 acceptable_obj_change_tol_ =  1.0000000000000000e+20
test iter = 6

**************************************************
*** Update HessianMatrix for Iteration 6:
**************************************************



**************************************************
*** Summary of Iteration: 6:
**************************************************

iter    objective    inf_pr   inf_du lg(mu)  ||d||  lg(rg) alpha_du alpha_pr  ls
   6  2.9894810e+01 0.00e+00 9.79e-07  -3.8 2.48e-03    -  1.00e+00 1.00e+00h  1 

**************************************************
*** Beginning Iteration 6 from the following point:
**************************************************

Current barrier parameter mu = 1.5042412372345582e-04
Current fraction-to-the-boundary parameter tau = 9.9984957587627654e-01

||curr_x||_inf   = 6.3505357995337863e-01
||curr_s||_inf   = 2.1000367231981269e+01
||curr_y_c||_inf = 1.8371445066100943e+01
||curr_y_d||_inf = 5.8051540294747417e-01
||curr_z_L||_inf = 2.4311320389282012e-01
||curr_z_U||_inf = 0.0000000000000000e+00
||curr_v_L||_inf = 5.8051540445171546e-01
||curr_v_U||_inf = 0.0000000000000000e+00

||delta_x||_inf   = 2.4814919672222031e-03
||delta_s||_inf   = 9.6876950045721405e-04
||delta_y_c||_inf = 7.5948275344375283e-03
||delta_y_d||_inf = 2.2505969226485102e-03
||delta_z_L||_inf = 4.7686349361696918e-02
||delta_z_U||_inf = 0.0000000000000000e+00
||delta_v_L||_inf = 2.7632161883185936e-03
||delta_v_U||_inf = 0.0000000000000000e+00
DenseVector "curr_x" with 4 elements:
curr_x[    1]= 6.3505357995337863e-01
curr_x[    2]= 5.2859884112717043e-04
curr_x[    3]= 3.1254460489644970e-01
curr_x[    4]= 5.1873216309044505e-02
DenseVector "curr_s" with 2 elements:
curr_s[    1]= 2.1000367231981269e+01
curr_s[    2]= 5.0002636829554321e+00
DenseVector "curr_y_c" with 1 elements:
curr_y_c[    1]=-1.8371445066100943e+01
DenseVector "curr_y_d" with 2 elements:
curr_y_d[    1]=-4.1047075705923086e-01
curr_y_d[    2]=-5.8051540294747417e-01
DenseVector "curr_slack_x_L" with 4 elements:
curr_slack_x_L[    1]= 6.3505358995337868e-01
curr_slack_x_L[    2]= 5.2860884112717048e-04
curr_slack_x_L[    3]= 3.1254461489644969e-01
curr_slack_x_L[    4]= 5.1873226309044507e-02
DenseVector "curr_slack_x_U" with 0 elements:
DenseVector "curr_z_L" with 4 elements:
curr_z_L[    1]= 2.3763878314745076e-04
curr_z_L[    2]= 2.4311320389282012e-01
curr_z_L[    3]= 4.7802478773568448e-04
curr_z_L[    4]= 3.2832978776041674e-03
DenseVector "curr_z_U" with 0 elements:
DenseVector "curr_slack_s_L" with 2 elements:
curr_slack_s_L[    1]= 3.6744198126825722e-04
curr_slack_s_L[    2]= 2.6373295543180575e-04
DenseVector "curr_slack_s_U" with 0 elements:
DenseVector "curr_v_L" with 2 elements:
curr_v_L[    1]= 4.1047075856347209e-01
curr_v_L[    2]= 5.8051540445171546e-01
DenseVector "curr_v_U" with 0 elements:
DenseVector "curr_grad_lag_x" with 4 elements:
curr_grad_lag_x[    1]=-5.2847926842975812e-08
curr_grad_lag_x[    2]= 7.1983771804395857e-08
curr_grad_lag_x[    3]=-9.7945439498682563e-07
curr_grad_lag_x[    4]= 4.6278711425540298e-08
DenseVector "curr_grad_lag_s" with 2 elements:
curr_grad_lag_s[    1]=-1.5042412315757758e-09
curr_grad_lag_s[    2]=-1.5042412870869271e-09

CompoundVector "delta" with 8 components:

Component 1:
  DenseVector "delta[ 0]" with 4 elements:
  delta[ 0][    1]= 2.1255445951882833e-03
  delta[ 0][    2]=-2.4814919672222031e-03
  delta[ 0][    3]= 7.7307156769498603e-04
  delta[ 0][    4]=-4.1712419566106623e-04

Component 2:
  DenseVector "delta[ 1]" with 2 elements:
  delta[ 1][    1]= 3.5932725767760619e-04
  delta[ 1][    2]=-9.6876950045721405e-04

Component 3:
  DenseVector "delta[ 2]" with 1 elements:
  delta[ 2][    1]= 7.5948275344375283e-03

Component 4:
  DenseVector "delta[ 3]" with 2 elements:
  delta[ 3][    1]=-8.9355518766975981e-04
  delta[ 3][    2]= 2.2505969226485102e-03

Component 5:
  DenseVector "delta[ 4]" with 4 elements:
  delta[ 4][    1]= 2.3017095364300934e-04
  delta[ 4][    2]= 8.8303065415470186e-03
  delta[ 4][    3]=-1.3194774873050760e-03
  delta[ 4][    4]=-4.7686349361696918e-02

Component 6:
  DenseVector "delta[ 5]" with 0 elements:

Component 7:
  DenseVector "delta[ 6]" with 2 elements:
  delta[ 6][    1]= 1.1133724138430788e-03
  delta[ 6][    2]=-2.7632161883185936e-03

Component 8:
  DenseVector "delta[ 7]" with 0 elements:


***Current NLP Values for Iteration 6:

                                   (scaled)                 (unscaled)
Objective...............:   2.9894810258333436e+01    2.9894810258333436e+01
Dual infeasibility......:   9.7945439498682563e-07    9.7945439498682563e-07
Constraint violation....:   0.0000000000000000e+00    0.0000000000000000e+00
Complementarity.........:   1.7031525384496649e-04    1.7031525384496649e-04
Overall NLP error.......:   1.7031525384496649e-04    1.7031525384496649e-04

DenseVector "grad_f" with 4 elements:
grad_f[    1]= 2.4550000000000001e+01
grad_f[    2]= 2.6750000000000000e+01
grad_f[    3]= 3.9000000000000000e+01
grad_f[    4]= 4.0500000000000000e+01
DenseVector "curr_c" with 1 elements:
curr_c[    1]= 0.0000000000000000e+00
DenseVector "curr_d" with 2 elements:
curr_d[    1]= 2.1000366414586434e+01
curr_d[    2]= 5.0002636829554321e+00
DenseVector "curr_d - curr_s" with 2 elements:
curr_d - curr_s[    1]=-8.1739483448473038e-07
curr_d - curr_s[    2]= 0.0000000000000000e+00

GenTMatrix "jac_c" of dimension 1 by 4 with 4 nonzero elements:
jac_c[    1,    1]= 1.0000000000000000e+00  (0)
jac_c[    1,    2]= 1.0000000000000000e+00  (1)
jac_c[    1,    3]= 1.0000000000000000e+00  (2)
jac_c[    1,    4]= 1.0000000000000000e+00  (3)

GenTMatrix "jac_d" of dimension 2 by 4 with 8 nonzero elements:
jac_d[    2,    1]= 2.2999999999999998e+00  (0)
jac_d[    2,    2]= 5.5999999999999996e+00  (1)
jac_d[    2,    3]= 1.1100000000000000e+01  (2)
jac_d[    2,    4]= 1.3000000000000000e+00  (3)
jac_d[    1,    1]= 1.1798969446405131e+01  (4)
jac_d[    1,    2]= 1.1899886453572059e+01  (5)
jac_d[    1,    3]= 3.4556315332840995e+01  (6)
jac_d[    1,    4]= 5.2063639609842539e+01  (7)

SymTMatrix "W" of dimension 4 with 10 nonzero elements:
W[    1,    1]= 1.2300676684148731e-01  (0)
W[    2,    1]=-3.9145300507448485e-06  (1)
W[    3,    1]=-2.4972711005946319e-01  (2)
W[    4,    1]=-1.2535298776635646e-03  (3)
W[    2,    2]= 8.8171754162195817e-02  (4)
W[    3,    2]=-1.4105130190736090e-04  (5)
W[    4,    2]=-7.0802093205707388e-07  (6)
W[    3,    3]= 5.1491269957174146e-01  (7)
W[    4,    3]=-4.5168134854547147e-02  (8)
W[    4,    4]= 2.8749163699092989e-01  (9)



**************************************************
*** Update Barrier Parameter for Iteration 6:
**************************************************

Optimality Error for Barrier Sub-problem = 2.191233e-05
  sub_problem_error < kappa_eps * mu (1.504241e-03)
Updating mu=   1.5042412372345582e-04 and tau=   9.9984957587627654e-01 to new_mu=   1.8449144625279508e-06 and new_tau=   9.9999815508553747e-01
Barrier Parameter: 1.844914e-06

**************************************************
*** Solving the Primal Dual System for Iteration 6:
**************************************************

Solving system with delta_x=0.000000e+00 delta_s=0.000000e+00
                    delta_c=0.000000e+00 delta_d=0.000000e+00

CompoundVector "RHS[ 0]" with 4 components:

Component 1:
  DenseVector "RHS[ 0][ 0]" with 4 elements:
  RHS[ 0][ 0][    1]= 2.3468082173803089e-04
  RHS[ 0][ 0][    2]= 2.3962314421545361e-01
  RHS[ 0][ 0][    3]= 4.7114246825067394e-04
  RHS[ 0][ 0][    4]= 3.2477783425657429e-03

Component 2:
  DenseVector "RHS[ 0][ 1]" with 2 elements:
  RHS[ 0][ 1][    1]= 4.0544978898862255e-01
  RHS[ 0][ 1][    2]= 5.7352001454543822e-01

Component 3:
  DenseVector "RHS[ 0][ 2]" with 1 elements:
  RHS[ 0][ 2][    1]= 0.0000000000000000e+00

Component 4:
  DenseVector "RHS[ 0][ 3]" with 2 elements:
  RHS[ 0][ 3][    1]=-8.1739483448473038e-07
  RHS[ 0][ 3][    2]= 0.0000000000000000e+00

CompoundSymMatrix "KKT" with 4 rows and columns components:
Component for row 0 and column 0:

  SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms:
  Term 0 with factor  1.0000000000000000e+00 and the following matrix:

    SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements:
    Term: 0[    1,    1]= 1.2300676684148731e-01  (0)
    Term: 0[    2,    1]=-3.9145300507448485e-06  (1)
    Term: 0[    3,    1]=-2.4972711005946319e-01  (2)
    Term: 0[    4,    1]=-1.2535298776635646e-03  (3)
    Term: 0[    2,    2]= 8.8171754162195817e-02  (4)
    Term: 0[    3,    2]=-1.4105130190736090e-04  (5)
    Term: 0[    4,    2]=-7.0802093205707388e-07  (6)
    Term: 0[    3,    3]= 5.1491269957174146e-01  (7)
    Term: 0[    4,    3]=-4.5168134854547147e-02  (8)
    Term: 0[    4,    4]= 2.8749163699092989e-01  (9)
  Term 1 with factor  1.0000000000000000e+00 and the following matrix:

    DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements:
      DenseVector "Term: 1" with 4 elements:
      Term: 1[    1]= 3.7420272384397762e-04
      Term: 1[    2]= 4.5991134649662996e+02
      Term: 1[    3]= 1.5294609631782031e-03
      Term: 1[    4]= 6.3294653354377894e-02
Component for row 1 and column 0:
This component has not been set.
Component for row 1 and column 1:

  DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[1][1]" with 2 elements:
    KKT[1][1][    1]= 1.1171035959111080e+03
    KKT[1][1][    2]= 2.2011485197261254e+03
Component for row 2 and column 0:

  GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements:
  KKT[2][0][    1,    1]= 1.0000000000000000e+00  (0)
  KKT[2][0][    1,    2]= 1.0000000000000000e+00  (1)
  KKT[2][0][    1,    3]= 1.0000000000000000e+00  (2)
  KKT[2][0][    1,    4]= 1.0000000000000000e+00  (3)
Component for row 2 and column 1:
This component has not been set.
Component for row 2 and column 2:

  DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements:
    DenseVector "KKT[2][2]" with 1 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
Component for row 3 and column 0:

  GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements:
  KKT[3][0][    2,    1]= 2.2999999999999998e+00  (0)
  KKT[3][0][    2,    2]= 5.5999999999999996e+00  (1)
  KKT[3][0][    2,    3]= 1.1100000000000000e+01  (2)
  KKT[3][0][    2,    4]= 1.3000000000000000e+00  (3)
  KKT[3][0][    1,    1]= 1.1798969446405131e+01  (4)
  KKT[3][0][    1,    2]= 1.1899886453572059e+01  (5)
  KKT[3][0][    1,    3]= 3.4556315332840995e+01  (6)
  KKT[3][0][    1,    4]= 5.2063639609842539e+01  (7)
Component for row 3 and column 1:

  IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00.
Component for row 3 and column 2:
This component has not been set.
Component for row 3 and column 3:

  DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[3][3]" with 2 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
******* KKT SYSTEM *******
(0) KKT[1][1] =   1.230067668414873e-01
(1) KKT[2][1] =  -3.914530050744848e-06
(2) KKT[3][1] =  -2.497271100594632e-01
(3) KKT[4][1] =  -1.253529877663565e-03
(4) KKT[2][2] =   8.817175416219582e-02
(5) KKT[3][2] =  -1.410513019073609e-04
(6) KKT[4][2] =  -7.080209320570739e-07
(7) KKT[3][3] =   5.149126995717415e-01
(8) KKT[4][3] =  -4.516813485454715e-02
(9) KKT[4][4] =   2.874916369909299e-01
(10) KKT[1][1] =   3.742027238439776e-04
(11) KKT[2][2] =   4.599113464966300e+02
(12) KKT[3][3] =   1.529460963178203e-03
(13) KKT[4][4] =   6.329465335437789e-02
(14) KKT[5][5] =   1.117103595911108e+03
(15) KKT[6][6] =   2.201148519726125e+03
(16) KKT[7][1] =   1.000000000000000e+00
(17) KKT[7][2] =   1.000000000000000e+00
(18) KKT[7][3] =   1.000000000000000e+00
(19) KKT[7][4] =   1.000000000000000e+00
(20) KKT[7][7] =  -0.000000000000000e+00
(21) KKT[9][1] =   2.300000000000000e+00
(22) KKT[9][2] =   5.600000000000000e+00
(23) KKT[9][3] =   1.110000000000000e+01
(24) KKT[9][4] =   1.300000000000000e+00
(25) KKT[8][1] =   1.179896944640513e+01
(26) KKT[8][2] =   1.189988645357206e+01
(27) KKT[8][3] =   3.455631533284100e+01
(28) KKT[8][4] =   5.206363960984254e+01
(29) KKT[8][5] =  -1.000000000000000e+00
(30) KKT[9][6] =  -1.000000000000000e+00
(31) KKT[8][8] =  -0.000000000000000e+00
(32) KKT[9][9] =  -0.000000000000000e+00
Right hand side 0 in TSymLinearSolver:
Trhs[    0,    0] =  2.3468082173803089e-04
Trhs[    0,    1] =  2.3962314421545361e-01
Trhs[    0,    2] =  4.7114246825067394e-04
Trhs[    0,    3] =  3.2477783425657429e-03
Trhs[    0,    4] =  4.0544978898862255e-01
Trhs[    0,    5] =  5.7352001454543822e-01
Trhs[    0,    6] =  0.0000000000000000e+00
Trhs[    0,    7] = -8.1739483448473038e-07
Trhs[    0,    8] =  0.0000000000000000e+00
HSL_MA97: delays 0, nfactor 45.000000, nflops 285.000000, maxfront 9
Ma97SolverInterface::Factorization: ma97_factor_solve took      0.000
Solution 0 in TSymLinearSolver:
Tsol[    0,    0] = -4.6173068622021437e-04
Tsol[    0,    1] =  5.2149040427628334e-04
Tsol[    0,    2] = -1.5512194474599420e-04
Tsol[    0,    3] =  9.5362226689925213e-05
Tsol[    0,    4] =  3.6300949825992189e-04
Tsol[    0,    5] =  2.6048299365706107e-04
Tsol[    0,    6] = -2.0213758044480032e-04
Tsol[    0,    7] =  6.9426867423283412e-05
Tsol[    0,    8] = -1.5825864336853346e-04
Factorization successful.

CompoundVector "SOL[ 0]" with 4 components:

Component 1:
  DenseVector "SOL[ 0][ 0]" with 4 elements:
  SOL[ 0][ 0][    1]=-4.6173068622021437e-04
  SOL[ 0][ 0][    2]= 5.2149040427628334e-04
  SOL[ 0][ 0][    3]=-1.5512194474599420e-04
  SOL[ 0][ 0][    4]= 9.5362226689925213e-05

Component 2:
  DenseVector "SOL[ 0][ 1]" with 2 elements:
  SOL[ 0][ 1][    1]= 3.6300949825992189e-04
  SOL[ 0][ 1][    2]= 2.6048299365706107e-04

Component 3:
  DenseVector "SOL[ 0][ 2]" with 1 elements:
  SOL[ 0][ 2][    1]=-2.0213758044480032e-04

Component 4:
  DenseVector "SOL[ 0][ 3]" with 2 elements:
  SOL[ 0][ 3][    1]= 6.9426867423283412e-05
  SOL[ 0][ 3][    2]=-1.5825864336853346e-04
Number of trial factorizations performed: 1
Perturbation parameters: delta_x=0.000000e+00 delta_s=0.000000e+00
                         delta_c=0.000000e+00 delta_d=0.000000e+00

CompoundVector "resid" with 8 components:

Component 1:
  DenseVector "resid[ 0]" with 4 elements:
  resid[ 0][    1]=-9.4273970884607658e-15
  resid[ 0][    2]=-4.3079841719818437e-15
  resid[ 0][    3]=-4.6936265705771647e-14
  resid[ 0][    4]= 1.9810906313205011e-14

Component 2:
  DenseVector "resid[ 1]" with 2 elements:
  resid[ 1][    1]=-3.7269449679189215e-18
  resid[ 1][    2]=-4.2500725161431774e-17

Component 3:
  DenseVector "resid[ 2]" with 1 elements:
  resid[ 2][    1]=-1.3552527156068805e-20

Component 4:
  DenseVector "resid[ 3]" with 2 elements:
  resid[ 3][    1]= 2.1684043449710089e-19
  resid[ 3][    2]=-2.1684043449710089e-19

Component 5:
  DenseVector "resid[ 4]" with 4 elements:
  resid[ 4][    1]= 0.0000000000000000e+00
  resid[ 4][    2]= 0.0000000000000000e+00
  resid[ 4][    3]= 0.0000000000000000e+00
  resid[ 4][    4]= 0.0000000000000000e+00

Component 6:
  DenseVector "resid[ 5]" with 0 elements:

Component 7:
  DenseVector "resid[ 6]" with 2 elements:
  resid[ 6][    1]= 0.0000000000000000e+00
  resid[ 6][    2]= 0.0000000000000000e+00

Component 8:
  DenseVector "resid[ 7]" with 0 elements:
max-norm resid_x  4.693627e-14
max-norm resid_s  4.250073e-17
max-norm resid_c  1.355253e-20
max-norm resid_d  2.168404e-19
max-norm resid_zL 0.000000e+00
max-norm resid_zU 0.000000e+00
max-norm resid_vL 0.000000e+00
max-norm resid_vU 0.000000e+00
nrm_rhs = 1.68e-04 nrm_sol = 3.24e-03 nrm_resid = 4.69e-14
residual_ratio = 1.376363e-11

CompoundVector "RHS[ 0]" with 4 components:

Component 1:
  DenseVector "RHS[ 0][ 0]" with 4 elements:
  RHS[ 0][ 0][    1]=-9.4273970884607658e-15
  RHS[ 0][ 0][    2]=-4.3079841719818437e-15
  RHS[ 0][ 0][    3]=-4.6936265705771647e-14
  RHS[ 0][ 0][    4]= 1.9810906313205011e-14

Component 2:
  DenseVector "RHS[ 0][ 1]" with 2 elements:
  RHS[ 0][ 1][    1]=-3.7269449679189215e-18
  RHS[ 0][ 1][    2]=-4.2500725161431774e-17

Component 3:
  DenseVector "RHS[ 0][ 2]" with 1 elements:
  RHS[ 0][ 2][    1]=-1.3552527156068805e-20

Component 4:
  DenseVector "RHS[ 0][ 3]" with 2 elements:
  RHS[ 0][ 3][    1]= 2.1684043449710089e-19
  RHS[ 0][ 3][    2]=-2.1684043449710089e-19

CompoundSymMatrix "KKT" with 4 rows and columns components:
Component for row 0 and column 0:

  SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms:
  Term 0 with factor  1.0000000000000000e+00 and the following matrix:

    SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements:
    Term: 0[    1,    1]= 1.2300676684148731e-01  (0)
    Term: 0[    2,    1]=-3.9145300507448485e-06  (1)
    Term: 0[    3,    1]=-2.4972711005946319e-01  (2)
    Term: 0[    4,    1]=-1.2535298776635646e-03  (3)
    Term: 0[    2,    2]= 8.8171754162195817e-02  (4)
    Term: 0[    3,    2]=-1.4105130190736090e-04  (5)
    Term: 0[    4,    2]=-7.0802093205707388e-07  (6)
    Term: 0[    3,    3]= 5.1491269957174146e-01  (7)
    Term: 0[    4,    3]=-4.5168134854547147e-02  (8)
    Term: 0[    4,    4]= 2.8749163699092989e-01  (9)
  Term 1 with factor  1.0000000000000000e+00 and the following matrix:

    DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements:
      DenseVector "Term: 1" with 4 elements:
      Term: 1[    1]= 3.7420272384397762e-04
      Term: 1[    2]= 4.5991134649662996e+02
      Term: 1[    3]= 1.5294609631782031e-03
      Term: 1[    4]= 6.3294653354377894e-02
Component for row 1 and column 0:
This component has not been set.
Component for row 1 and column 1:

  DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[1][1]" with 2 elements:
    KKT[1][1][    1]= 1.1171035959111080e+03
    KKT[1][1][    2]= 2.2011485197261254e+03
Component for row 2 and column 0:

  GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements:
  KKT[2][0][    1,    1]= 1.0000000000000000e+00  (0)
  KKT[2][0][    1,    2]= 1.0000000000000000e+00  (1)
  KKT[2][0][    1,    3]= 1.0000000000000000e+00  (2)
  KKT[2][0][    1,    4]= 1.0000000000000000e+00  (3)
Component for row 2 and column 1:
This component has not been set.
Component for row 2 and column 2:

  DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements:
    DenseVector "KKT[2][2]" with 1 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
Component for row 3 and column 0:

  GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements:
  KKT[3][0][    2,    1]= 2.2999999999999998e+00  (0)
  KKT[3][0][    2,    2]= 5.5999999999999996e+00  (1)
  KKT[3][0][    2,    3]= 1.1100000000000000e+01  (2)
  KKT[3][0][    2,    4]= 1.3000000000000000e+00  (3)
  KKT[3][0][    1,    1]= 1.1798969446405131e+01  (4)
  KKT[3][0][    1,    2]= 1.1899886453572059e+01  (5)
  KKT[3][0][    1,    3]= 3.4556315332840995e+01  (6)
  KKT[3][0][    1,    4]= 5.2063639609842539e+01  (7)
Component for row 3 and column 1:

  IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00.
Component for row 3 and column 2:
This component has not been set.
Component for row 3 and column 3:

  DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[3][3]" with 2 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
******* KKT SYSTEM *******
(0) KKT[1][1] =   1.230067668414873e-01
(1) KKT[2][1] =  -3.914530050744848e-06
(2) KKT[3][1] =  -2.497271100594632e-01
(3) KKT[4][1] =  -1.253529877663565e-03
(4) KKT[2][2] =   8.817175416219582e-02
(5) KKT[3][2] =  -1.410513019073609e-04
(6) KKT[4][2] =  -7.080209320570739e-07
(7) KKT[3][3] =   5.149126995717415e-01
(8) KKT[4][3] =  -4.516813485454715e-02
(9) KKT[4][4] =   2.874916369909299e-01
(10) KKT[1][1] =   3.742027238439776e-04
(11) KKT[2][2] =   4.599113464966300e+02
(12) KKT[3][3] =   1.529460963178203e-03
(13) KKT[4][4] =   6.329465335437789e-02
(14) KKT[5][5] =   1.117103595911108e+03
(15) KKT[6][6] =   2.201148519726125e+03
(16) KKT[7][1] =   1.000000000000000e+00
(17) KKT[7][2] =   1.000000000000000e+00
(18) KKT[7][3] =   1.000000000000000e+00
(19) KKT[7][4] =   1.000000000000000e+00
(20) KKT[7][7] =  -0.000000000000000e+00
(21) KKT[9][1] =   2.300000000000000e+00
(22) KKT[9][2] =   5.600000000000000e+00
(23) KKT[9][3] =   1.110000000000000e+01
(24) KKT[9][4] =   1.300000000000000e+00
(25) KKT[8][1] =   1.179896944640513e+01
(26) KKT[8][2] =   1.189988645357206e+01
(27) KKT[8][3] =   3.455631533284100e+01
(28) KKT[8][4] =   5.206363960984254e+01
(29) KKT[8][5] =  -1.000000000000000e+00
(30) KKT[9][6] =  -1.000000000000000e+00
(31) KKT[8][8] =  -0.000000000000000e+00
(32) KKT[9][9] =  -0.000000000000000e+00
Right hand side 0 in TSymLinearSolver:
Trhs[    0,    0] = -9.4273970884607658e-15
Trhs[    0,    1] = -4.3079841719818437e-15
Trhs[    0,    2] = -4.6936265705771647e-14
Trhs[    0,    3] =  1.9810906313205011e-14
Trhs[    0,    4] = -3.7269449679189215e-18
Trhs[    0,    5] = -4.2500725161431774e-17
Trhs[    0,    6] = -1.3552527156068805e-20
Trhs[    0,    7] =  2.1684043449710089e-19
Trhs[    0,    8] = -2.1684043449710089e-19
Solution 0 in TSymLinearSolver:
Tsol[    0,    0] = -4.4131250339707737e-17
Tsol[    0,    1] =  5.2389796139042337e-17
Tsol[    0,    2] = -1.8773933549137465e-17
Tsol[    0,    3] =  1.0501835222643223e-17
Tsol[    0,    4] =  5.1830706787714044e-19
Tsol[    0,    5] = -2.6404535741918507e-18
Tsol[    0,    6] = -3.0323178456358384e-15
Tsol[    0,    7] =  5.8272963427961515e-16
Tsol[    0,    8] = -5.7695297510765172e-15
Factorization successful.

CompoundVector "SOL[ 0]" with 4 components:

Component 1:
  DenseVector "SOL[ 0][ 0]" with 4 elements:
  SOL[ 0][ 0][    1]=-4.4131250339707737e-17
  SOL[ 0][ 0][    2]= 5.2389796139042337e-17
  SOL[ 0][ 0][    3]=-1.8773933549137465e-17
  SOL[ 0][ 0][    4]= 1.0501835222643223e-17

Component 2:
  DenseVector "SOL[ 0][ 1]" with 2 elements:
  SOL[ 0][ 1][    1]= 5.1830706787714044e-19
  SOL[ 0][ 1][    2]=-2.6404535741918507e-18

Component 3:
  DenseVector "SOL[ 0][ 2]" with 1 elements:
  SOL[ 0][ 2][    1]=-3.0323178456358384e-15

Component 4:
  DenseVector "SOL[ 0][ 3]" with 2 elements:
  SOL[ 0][ 3][    1]= 5.8272963427961515e-16
  SOL[ 0][ 3][    2]=-5.7695297510765172e-15

CompoundVector "resid" with 8 components:

Component 1:
  DenseVector "resid[ 0]" with 4 elements:
  resid[ 0][    1]=-1.5253210495477830e-20
  resid[ 0][    2]= 9.3160389308172189e-20
  resid[ 0][    3]=-1.5246593050577406e-20
  resid[ 0][    4]=-6.9463319119753052e-20

Component 2:
  DenseVector "resid[ 1]" with 2 elements:
  resid[ 1][    1]= 0.0000000000000000e+00
  resid[ 1][    2]= 0.0000000000000000e+00

Component 3:
  DenseVector "resid[ 2]" with 1 elements:
  resid[ 2][    1]= 2.7105054312137611e-20

Component 4:
  DenseVector "resid[ 3]" with 2 elements:
  resid[ 3][    1]= 7.5894152073985310e-19
  resid[ 3][    2]= 1.6263032587282567e-19

Component 5:
  DenseVector "resid[ 4]" with 4 elements:
  resid[ 4][    1]= 2.7105054312137611e-20
  resid[ 4][    2]=-2.7263872989747792e-21
  resid[ 4][    3]=-2.7105054312137611e-20
  resid[ 4][    4]= 0.0000000000000000e+00

Component 6:
  DenseVector "resid[ 5]" with 0 elements:

Component 7:
  DenseVector "resid[ 6]" with 2 elements:
  resid[ 6][    1]=-3.1194635260599780e-20
  resid[ 6][    2]= 1.2162863726979719e-20

Component 8:
  DenseVector "resid[ 7]" with 0 elements:
max-norm resid_x  9.316039e-20
max-norm resid_s  0.000000e+00
max-norm resid_c  2.710505e-20
max-norm resid_d  7.589415e-19
max-norm resid_zL 2.710505e-20
max-norm resid_zU 0.000000e+00
max-norm resid_vL 3.119464e-20
max-norm resid_vU 0.000000e+00
nrm_rhs = 1.68e-04 nrm_sol = 3.24e-03 nrm_resid = 7.59e-19
residual_ratio = 2.225526e-16
*** Step Calculated for Iteration: 6

CompoundVector "delta" with 8 components:

Component 1:
  DenseVector "delta[ 0]" with 4 elements:
  delta[ 0][    1]= 4.6173068622017025e-04
  delta[ 0][    2]=-5.2149040427623098e-04
  delta[ 0][    3]= 1.5512194474597541e-04
  delta[ 0][    4]=-9.5362226689914710e-05

Component 2:
  DenseVector "delta[ 1]" with 2 elements:
  delta[ 1][    1]=-3.6300949825992135e-04
  delta[ 1][    2]=-2.6048299365706373e-04

Component 3:
  DenseVector "delta[ 2]" with 1 elements:
  delta[ 2][    1]= 2.0213758044176799e-04

Component 4:
  DenseVector "delta[ 3]" with 2 elements:
  delta[ 3][    1]=-6.9426867422700680e-05
  delta[ 3][    2]= 1.5825864336276393e-04

Component 5:
  DenseVector "delta[ 4]" with 4 elements:
  delta[ 4][    1]=-2.3490643209619517e-04
  delta[ 4][    2]= 2.1628180252061319e-04
  delta[ 4][    3]=-4.7235915715553733e-04
  delta[ 4][    4]=-3.2416961263237332e-03

Component 6:
  DenseVector "delta[ 5]" with 0 elements:

Component 7:
  DenseVector "delta[ 6]" with 2 elements:
  delta[ 6][    1]= 6.9425381630613728e-05
  delta[ 6][    2]=-1.5826012915490638e-04

Component 8:
  DenseVector "delta[ 7]" with 0 elements:

**************************************************
*** Finding Acceptable Trial Point for Iteration 6:
**************************************************

--> Starting line search in iteration 6 <--
Mu has changed in line search - resetting watchdog counters.
Acceptable Check:
  overall_error =  1.7031525384496649e-04   acceptable_tol_             =  2.5000000000000002e-06
  dual_inf      =  9.7945439498682563e-07   acceptable_dual_inf_tol_    =  1.0000000000000000e+10
  constr_viol   =  0.0000000000000000e+00   acceptable_constr_viol_tol_ =  1.0000000000000000e-02
  compl_inf     =  1.7031525384496649e-04   acceptable_compl_inf_tol_   =  1.0000000000000000e-02
  curr_obj_val_ =  2.9894810258333436e+01   last_obj_val                =  2.9895751787428928e+01
  fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) =  3.1494733947324012e-05 acceptable_obj_change_tol_ =  1.0000000000000000e+20
test iter = 6
The current filter has 0 entries.
Relative step size for delta_x = 5.212149e-04
minimal step size ALPHA_MIN = 9.700214E-13
Starting checks for alpha (primal) = 1.00e+00
Checking acceptability for trial step size alpha_primal_test= 1.000000e+00:
  New values of barrier function     =  2.9894459830341511e+01  (reference  2.9894862415535499e+01):
  New values of constraint violation =  3.7627721383159951e-08  (reference  8.1739483448473038e-07):
reference_theta = 8.173948e-07 reference_gradBarrTDelta = -4.213283e-04
Checking sufficient reduction...
Succeeded...
Checking filter acceptability...
Succeeded...
reference_theta = 8.173948e-07 reference_gradBarrTDelta = -4.213283e-04
Convergence Check:
  overall_error =  2.1540498233862424e-06   IpData().tol()   =  2.4999999999999999e-08
  dual_inf      =  3.6266234808475257e-08   dual_inf_tol_    =  1.0000000000000000e+00
  constr_viol   =  0.0000000000000000e+00   constr_viol_tol_ =  1.0000000000000000e-04
  compl_inf     =  2.1540498233862424e-06   compl_inf_tol_   =  1.0000000000000000e-04
obj val update iter = 7
Acceptable Check:
  overall_error =  2.1540498233862424e-06   acceptable_tol_             =  2.5000000000000002e-06
  dual_inf      =  3.6266234808475257e-08   acceptable_dual_inf_tol_    =  1.0000000000000000e+10
  constr_viol   =  0.0000000000000000e+00   acceptable_constr_viol_tol_ =  1.0000000000000000e-02
  compl_inf     =  2.1540498233862424e-06   acceptable_compl_inf_tol_   =  1.0000000000000000e-02
  curr_obj_val_ =  2.9894383464029904e+01   last_obj_val                =  2.9894810258333436e+01
  fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) =  1.4276738774220053e-05 acceptable_obj_change_tol_ =  1.0000000000000000e+20
test iter = 7

**************************************************
*** Update HessianMatrix for Iteration 7:
**************************************************



**************************************************
*** Summary of Iteration: 7:
**************************************************

iter    objective    inf_pr   inf_du lg(mu)  ||d||  lg(rg) alpha_du alpha_pr  ls
   7  2.9894383e+01 0.00e+00 3.63e-08  -5.7 5.21e-04    -  1.00e+00 1.00e+00h  1 A

**************************************************
*** Beginning Iteration 7 from the following point:
**************************************************

Current barrier parameter mu = 1.8449144625279508e-06
Current fraction-to-the-boundary parameter tau = 9.9999815508553747e-01

||curr_x||_inf   = 6.3551531063959876e-01
||curr_s||_inf   = 2.1000004222483010e+01
||curr_y_c||_inf = 1.8371242928520502e+01
||curr_y_d||_inf = 5.8035714430411145e-01
||curr_z_L||_inf = 2.4332948569534074e-01
||curr_z_U||_inf = 0.0000000000000000e+00
||curr_v_L||_inf = 5.8035714432256058e-01
||curr_v_U||_inf = 0.0000000000000000e+00

||delta_x||_inf   = 5.2149040427623098e-04
||delta_s||_inf   = 3.6300949825992135e-04
||delta_y_c||_inf = 2.0213758044176799e-04
||delta_y_d||_inf = 1.5825864336276393e-04
||delta_z_L||_inf = 3.2416961263237332e-03
||delta_z_U||_inf = 0.0000000000000000e+00
||delta_v_L||_inf = 1.5826012915490638e-04
||delta_v_U||_inf = 0.0000000000000000e+00
DenseVector "curr_x" with 4 elements:
curr_x[    1]= 6.3551531063959876e-01
curr_x[    2]= 7.1084368509394561e-06
curr_x[    3]= 3.1269972684119568e-01
curr_x[    4]= 5.1777854082354594e-02
DenseVector "curr_s" with 2 elements:
curr_s[    1]= 2.1000004222483010e+01
curr_s[    2]= 5.0000031999617747e+00
DenseVector "curr_y_c" with 1 elements:
curr_y_c[    1]=-1.8371242928520502e+01
DenseVector "curr_y_d" with 2 elements:
curr_y_d[    1]=-4.1054018392665359e-01
curr_y_d[    2]=-5.8035714430411145e-01
DenseVector "curr_slack_x_L" with 4 elements:
curr_slack_x_L[    1]= 6.3551532063959881e-01
curr_slack_x_L[    2]= 7.1184368509394561e-06
curr_slack_x_L[    3]= 3.1269973684119567e-01
curr_slack_x_L[    4]= 5.1777864082354595e-02
DenseVector "curr_slack_x_U" with 0 elements:
DenseVector "curr_z_L" with 4 elements:
curr_z_L[    1]= 2.7323510512555836e-06
curr_z_L[    2]= 2.4332948569534074e-01
curr_z_L[    3]= 5.6656305801471474e-06
curr_z_L[    4]= 4.1601751280434182e-05
DenseVector "curr_z_U" with 0 elements:
DenseVector "curr_slack_s_L" with 2 elements:
curr_slack_s_L[    1]= 4.4324830099640167e-06
curr_slack_s_L[    2]= 3.2499617743653175e-06
DenseVector "curr_slack_s_U" with 0 elements:
DenseVector "curr_v_L" with 2 elements:
curr_v_L[    1]= 4.1054018394510272e-01
curr_v_L[    2]= 5.8035714432256058e-01
DenseVector "curr_v_U" with 0 elements:
DenseVector "curr_grad_lag_x" with 4 elements:
curr_grad_lag_x[    1]=-7.4502094005233881e-09
curr_grad_lag_x[    2]= 1.5505804862314676e-08
curr_grad_lag_x[    3]=-3.6266234808475257e-08
curr_grad_lag_x[    4]= 1.1558658802660049e-08
DenseVector "curr_grad_lag_s" with 2 elements:
curr_grad_lag_s[    1]=-1.8449131111708539e-11
curr_grad_lag_s[    2]=-1.8449131111708539e-11

CompoundVector "delta" with 8 components:

Component 1:
  DenseVector "delta[ 0]" with 4 elements:
  delta[ 0][    1]= 4.6173068622017025e-04
  delta[ 0][    2]=-5.2149040427623098e-04
  delta[ 0][    3]= 1.5512194474597541e-04
  delta[ 0][    4]=-9.5362226689914710e-05

Component 2:
  DenseVector "delta[ 1]" with 2 elements:
  delta[ 1][    1]=-3.6300949825992135e-04
  delta[ 1][    2]=-2.6048299365706373e-04

Component 3:
  DenseVector "delta[ 2]" with 1 elements:
  delta[ 2][    1]= 2.0213758044176799e-04

Component 4:
  DenseVector "delta[ 3]" with 2 elements:
  delta[ 3][    1]=-6.9426867422700680e-05
  delta[ 3][    2]= 1.5825864336276393e-04

Component 5:
  DenseVector "delta[ 4]" with 4 elements:
  delta[ 4][    1]=-2.3490643209619517e-04
  delta[ 4][    2]= 2.1628180252061319e-04
  delta[ 4][    3]=-4.7235915715553733e-04
  delta[ 4][    4]=-3.2416961263237332e-03

Component 6:
  DenseVector "delta[ 5]" with 0 elements:

Component 7:
  DenseVector "delta[ 6]" with 2 elements:
  delta[ 6][    1]= 6.9425381630613728e-05
  delta[ 6][    2]=-1.5826012915490638e-04

Component 8:
  DenseVector "delta[ 7]" with 0 elements:


***Current NLP Values for Iteration 7:

                                   (scaled)                 (unscaled)
Objective...............:   2.9894383464029904e+01    2.9894383464029904e+01
Dual infeasibility......:   3.6266234808475257e-08    3.6266234808475257e-08
Constraint violation....:   0.0000000000000000e+00    0.0000000000000000e+00
Complementarity.........:   2.1540498233862424e-06    2.1540498233862424e-06
Overall NLP error.......:   2.1540498233862424e-06    2.1540498233862424e-06

DenseVector "grad_f" with 4 elements:
grad_f[    1]= 2.4550000000000001e+01
grad_f[    2]= 2.6750000000000000e+01
grad_f[    3]= 3.9000000000000000e+01
grad_f[    4]= 4.0500000000000000e+01
DenseVector "curr_c" with 1 elements:
curr_c[    1]= 0.0000000000000000e+00
DenseVector "curr_d" with 2 elements:
curr_d[    1]= 2.1000004184855289e+01
curr_d[    2]= 5.0000031999617747e+00
DenseVector "curr_d - curr_s" with 2 elements:
curr_d - curr_s[    1]=-3.7627721383159951e-08
curr_d - curr_s[    2]= 0.0000000000000000e+00

GenTMatrix "jac_c" of dimension 1 by 4 with 4 nonzero elements:
jac_c[    1,    1]= 1.0000000000000000e+00  (0)
jac_c[    1,    2]= 1.0000000000000000e+00  (1)
jac_c[    1,    3]= 1.0000000000000000e+00  (2)
jac_c[    1,    4]= 1.0000000000000000e+00  (3)

GenTMatrix "jac_d" of dimension 2 by 4 with 8 nonzero elements:
jac_d[    2,    1]= 2.2999999999999998e+00  (0)
jac_d[    2,    2]= 5.5999999999999996e+00  (1)
jac_d[    2,    3]= 1.1100000000000000e+01  (2)
jac_d[    2,    4]= 1.3000000000000000e+00  (3)
jac_d[    1,    1]= 1.1798925182789434e+01  (4)
jac_d[    1,    2]= 1.1899998473835513e+01  (5)
jac_d[    1,    3]= 3.4556391056896160e+01  (6)
jac_d[    1,    4]= 5.2063724837208390e+01  (7)

SymTMatrix "W" of dimension 4 with 10 nonzero elements:
W[    1,    1]= 1.2296220471794006e-01  (0)
W[    2,    1]=-5.2608573728668323e-08  (1)
W[    3,    1]=-2.4969519213810940e-01  (2)
W[    4,    1]=-1.2504448837915190e-03  (3)
W[    2,    2]= 8.8142001240504794e-02  (4)
W[    3,    2]=-1.8951947361257652e-06  (5)
W[    4,    2]=-9.4909178718439092e-09  (6)
W[    3,    3]= 5.1492700270553149e-01  (7)
W[    4,    3]=-4.5046584493996095e-02  (8)
W[    4,    4]= 2.8739567907856889e-01  (9)



**************************************************
*** Update Barrier Parameter for Iteration 7:
**************************************************

Optimality Error for Barrier Sub-problem = 3.091354e-07
  sub_problem_error < kappa_eps * mu (1.844914e-05)
Updating mu=   1.8449144625279508e-06 and tau=   9.9999815508553747e-01 to new_mu=   2.5059035596800618e-09 and new_tau=   9.9999999749409640e-01
Barrier Parameter: 2.505904e-09

**************************************************
*** Solving the Primal Dual System for Iteration 7:
**************************************************

Solving system with delta_x=0.000000e+00 delta_s=0.000000e+00
                    delta_c=0.000000e+00 delta_d=0.000000e+00

CompoundVector "RHS[ 0]" with 4 components:

Component 1:
  DenseVector "RHS[ 0][ 0]" with 4 elements:
  RHS[ 0][ 0][    1]= 2.7209577620379489e-06
  RHS[ 0][ 0][    2]= 2.4297747116815166e-01
  RHS[ 0][ 0][    3]= 5.6213506010706399e-06
  RHS[ 0][ 0][    4]= 4.1564912765916002e-05

Component 2:
  DenseVector "RHS[ 0][ 1]" with 2 elements:
  RHS[ 0][ 1][    1]= 4.0997483408686042e-01
  RHS[ 0][ 1][    2]= 5.7958608798604505e-01

Component 3:
  DenseVector "RHS[ 0][ 2]" with 1 elements:
  RHS[ 0][ 2][    1]= 0.0000000000000000e+00

Component 4:
  DenseVector "RHS[ 0][ 3]" with 2 elements:
  RHS[ 0][ 3][    1]=-3.7627721383159951e-08
  RHS[ 0][ 3][    2]= 0.0000000000000000e+00

CompoundSymMatrix "KKT" with 4 rows and columns components:
Component for row 0 and column 0:

  SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms:
  Term 0 with factor  1.0000000000000000e+00 and the following matrix:

    SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements:
    Term: 0[    1,    1]= 1.2296220471794006e-01  (0)
    Term: 0[    2,    1]=-5.2608573728668323e-08  (1)
    Term: 0[    3,    1]=-2.4969519213810940e-01  (2)
    Term: 0[    4,    1]=-1.2504448837915190e-03  (3)
    Term: 0[    2,    2]= 8.8142001240504794e-02  (4)
    Term: 0[    3,    2]=-1.8951947361257652e-06  (5)
    Term: 0[    4,    2]=-9.4909178718439092e-09  (6)
    Term: 0[    3,    3]= 5.1492700270553149e-01  (7)
    Term: 0[    4,    3]=-4.5046584493996095e-02  (8)
    Term: 0[    4,    4]= 2.8739567907856889e-01  (9)
  Term 1 with factor  1.0000000000000000e+00 and the following matrix:

    DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements:
      DenseVector "Term: 1" with 4 elements:
      Term: 1[    1]= 4.2994259343829446e-06
      Term: 1[    2]= 3.4182994214976752e+04
      Term: 1[    3]= 1.8118437314273896e-05
      Term: 1[    4]= 8.0346596016909989e-04
Component for row 1 and column 0:
This component has not been set.
Component for row 1 and column 1:

  DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[1][1]" with 2 elements:
    KKT[1][1][    1]= 9.2620813891948914e+04
    KKT[1][1][    2]= 1.7857352935663314e+05
Component for row 2 and column 0:

  GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements:
  KKT[2][0][    1,    1]= 1.0000000000000000e+00  (0)
  KKT[2][0][    1,    2]= 1.0000000000000000e+00  (1)
  KKT[2][0][    1,    3]= 1.0000000000000000e+00  (2)
  KKT[2][0][    1,    4]= 1.0000000000000000e+00  (3)
Component for row 2 and column 1:
This component has not been set.
Component for row 2 and column 2:

  DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements:
    DenseVector "KKT[2][2]" with 1 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
Component for row 3 and column 0:

  GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements:
  KKT[3][0][    2,    1]= 2.2999999999999998e+00  (0)
  KKT[3][0][    2,    2]= 5.5999999999999996e+00  (1)
  KKT[3][0][    2,    3]= 1.1100000000000000e+01  (2)
  KKT[3][0][    2,    4]= 1.3000000000000000e+00  (3)
  KKT[3][0][    1,    1]= 1.1798925182789434e+01  (4)
  KKT[3][0][    1,    2]= 1.1899998473835513e+01  (5)
  KKT[3][0][    1,    3]= 3.4556391056896160e+01  (6)
  KKT[3][0][    1,    4]= 5.2063724837208390e+01  (7)
Component for row 3 and column 1:

  IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00.
Component for row 3 and column 2:
This component has not been set.
Component for row 3 and column 3:

  DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[3][3]" with 2 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
******* KKT SYSTEM *******
(0) KKT[1][1] =   1.229622047179401e-01
(1) KKT[2][1] =  -5.260857372866832e-08
(2) KKT[3][1] =  -2.496951921381094e-01
(3) KKT[4][1] =  -1.250444883791519e-03
(4) KKT[2][2] =   8.814200124050479e-02
(5) KKT[3][2] =  -1.895194736125765e-06
(6) KKT[4][2] =  -9.490917871843909e-09
(7) KKT[3][3] =   5.149270027055315e-01
(8) KKT[4][3] =  -4.504658449399609e-02
(9) KKT[4][4] =   2.873956790785689e-01
(10) KKT[1][1] =   4.299425934382945e-06
(11) KKT[2][2] =   3.418299421497675e+04
(12) KKT[3][3] =   1.811843731427390e-05
(13) KKT[4][4] =   8.034659601690999e-04
(14) KKT[5][5] =   9.262081389194891e+04
(15) KKT[6][6] =   1.785735293566331e+05
(16) KKT[7][1] =   1.000000000000000e+00
(17) KKT[7][2] =   1.000000000000000e+00
(18) KKT[7][3] =   1.000000000000000e+00
(19) KKT[7][4] =   1.000000000000000e+00
(20) KKT[7][7] =  -0.000000000000000e+00
(21) KKT[9][1] =   2.300000000000000e+00
(22) KKT[9][2] =   5.600000000000000e+00
(23) KKT[9][3] =   1.110000000000000e+01
(24) KKT[9][4] =   1.300000000000000e+00
(25) KKT[8][1] =   1.179892518278943e+01
(26) KKT[8][2] =   1.189999847383551e+01
(27) KKT[8][3] =   3.455639105689616e+01
(28) KKT[8][4] =   5.206372483720839e+01
(29) KKT[8][5] =  -1.000000000000000e+00
(30) KKT[9][6] =  -1.000000000000000e+00
(31) KKT[8][8] =  -0.000000000000000e+00
(32) KKT[9][9] =  -0.000000000000000e+00
Right hand side 0 in TSymLinearSolver:
Trhs[    0,    0] =  2.7209577620379489e-06
Trhs[    0,    1] =  2.4297747116815166e-01
Trhs[    0,    2] =  5.6213506010706399e-06
Trhs[    0,    3] =  4.1564912765916002e-05
Trhs[    0,    4] =  4.0997483408686042e-01
Trhs[    0,    5] =  5.7958608798604505e-01
Trhs[    0,    6] =  0.0000000000000000e+00
Trhs[    0,    7] = -3.7627721383159951e-08
Trhs[    0,    8] =  0.0000000000000000e+00
HSL_MA97: delays 0, nfactor 45.000000, nflops 285.000000, maxfront 9
Ma97SolverInterface::Factorization: ma97_factor_solve took      0.000
Solution 0 in TSymLinearSolver:
Tsol[    0,    0] = -6.2652408420053857e-06
Tsol[    0,    1] =  7.1082302230758798e-06
Tsol[    0,    2] = -2.1484200753485478e-06
Tsol[    0,    3] =  1.3054306942780542e-06
Tsol[    0,    4] =  4.4263887633871725e-06
Tsol[    0,    5] =  3.2456323788051284e-06
Tsol[    0,    6] = -2.8767390109979545e-06
Tsol[    0,    7] =  8.9578023676484264e-07
Tsol[    0,    8] = -2.0591086484500476e-06
Factorization successful.

CompoundVector "SOL[ 0]" with 4 components:

Component 1:
  DenseVector "SOL[ 0][ 0]" with 4 elements:
  SOL[ 0][ 0][    1]=-6.2652408420053857e-06
  SOL[ 0][ 0][    2]= 7.1082302230758798e-06
  SOL[ 0][ 0][    3]=-2.1484200753485478e-06
  SOL[ 0][ 0][    4]= 1.3054306942780542e-06

Component 2:
  DenseVector "SOL[ 0][ 1]" with 2 elements:
  SOL[ 0][ 1][    1]= 4.4263887633871725e-06
  SOL[ 0][ 1][    2]= 3.2456323788051284e-06

Component 3:
  DenseVector "SOL[ 0][ 2]" with 1 elements:
  SOL[ 0][ 2][    1]=-2.8767390109979545e-06

Component 4:
  DenseVector "SOL[ 0][ 3]" with 2 elements:
  SOL[ 0][ 3][    1]= 8.9578023676484264e-07
  SOL[ 0][ 3][    2]=-2.0591086484500476e-06
Number of trial factorizations performed: 1
Perturbation parameters: delta_x=0.000000e+00 delta_s=0.000000e+00
                         delta_c=0.000000e+00 delta_d=0.000000e+00

CompoundVector "resid" with 8 components:

Component 1:
  DenseVector "resid[ 0]" with 4 elements:
  resid[ 0][    1]=-1.4201186214612178e-14
  resid[ 0][    2]= 8.1619269370434726e-15
  resid[ 0][    3]=-3.2860558862630216e-14
  resid[ 0][    4]= 8.9791595711474722e-15

Component 2:
  DenseVector "resid[ 1]" with 2 elements:
  resid[ 1][    1]= 7.1205824710932758e-18
  resid[ 1][    2]= 8.4275543087066612e-17

Component 3:
  DenseVector "resid[ 2]" with 1 elements:
  resid[ 2][    1]= 4.2351647362715017e-22

Component 4:
  DenseVector "resid[ 3]" with 2 elements:
  resid[ 3][    1]=-6.7762635780344027e-21
  resid[ 3][    2]= 8.4703294725430034e-22

Component 5:
  DenseVector "resid[ 4]" with 4 elements:
  resid[ 4][    1]=-2.1175823681357508e-22
  resid[ 4][    2]= 0.0000000000000000e+00
  resid[ 4][    3]= 0.0000000000000000e+00
  resid[ 4][    4]= 0.0000000000000000e+00

Component 6:
  DenseVector "resid[ 5]" with 0 elements:

Component 7:
  DenseVector "resid[ 6]" with 2 elements:
  resid[ 6][    1]= 0.0000000000000000e+00
  resid[ 6][    2]= 0.0000000000000000e+00

Component 8:
  DenseVector "resid[ 7]" with 0 elements:
max-norm resid_x  3.286056e-14
max-norm resid_s  8.427554e-17
max-norm resid_c  4.235165e-22
max-norm resid_d  6.776264e-21
max-norm resid_zL 2.117582e-22
max-norm resid_zU 0.000000e+00
max-norm resid_vL 0.000000e+00
max-norm resid_vU 0.000000e+00
nrm_rhs = 2.15e-06 nrm_sol = 4.16e-05 nrm_resid = 3.29e-14
residual_ratio = 7.518916e-10

CompoundVector "RHS[ 0]" with 4 components:

Component 1:
  DenseVector "RHS[ 0][ 0]" with 4 elements:
  RHS[ 0][ 0][    1]=-1.4201186547819309e-14
  RHS[ 0][ 0][    2]= 8.1619269370434726e-15
  RHS[ 0][ 0][    3]=-3.2860558862630216e-14
  RHS[ 0][ 0][    4]= 8.9791595711474722e-15

Component 2:
  DenseVector "RHS[ 0][ 1]" with 2 elements:
  RHS[ 0][ 1][    1]= 7.1205824710932758e-18
  RHS[ 0][ 1][    2]= 8.4275543087066612e-17

Component 3:
  DenseVector "RHS[ 0][ 2]" with 1 elements:
  RHS[ 0][ 2][    1]= 4.2351647362715017e-22

Component 4:
  DenseVector "RHS[ 0][ 3]" with 2 elements:
  RHS[ 0][ 3][    1]=-6.7762635780344027e-21
  RHS[ 0][ 3][    2]= 8.4703294725430034e-22

CompoundSymMatrix "KKT" with 4 rows and columns components:
Component for row 0 and column 0:

  SumSymMatrix "KKT[0][0]" of dimension 4 with 2 terms:
  Term 0 with factor  1.0000000000000000e+00 and the following matrix:

    SymTMatrix "Term: 0" of dimension 4 with 10 nonzero elements:
    Term: 0[    1,    1]= 1.2296220471794006e-01  (0)
    Term: 0[    2,    1]=-5.2608573728668323e-08  (1)
    Term: 0[    3,    1]=-2.4969519213810940e-01  (2)
    Term: 0[    4,    1]=-1.2504448837915190e-03  (3)
    Term: 0[    2,    2]= 8.8142001240504794e-02  (4)
    Term: 0[    3,    2]=-1.8951947361257652e-06  (5)
    Term: 0[    4,    2]=-9.4909178718439092e-09  (6)
    Term: 0[    3,    3]= 5.1492700270553149e-01  (7)
    Term: 0[    4,    3]=-4.5046584493996095e-02  (8)
    Term: 0[    4,    4]= 2.8739567907856889e-01  (9)
  Term 1 with factor  1.0000000000000000e+00 and the following matrix:

    DiagMatrix "Term: 1" with 4 rows and columns, and with diagonal elements:
      DenseVector "Term: 1" with 4 elements:
      Term: 1[    1]= 4.2994259343829446e-06
      Term: 1[    2]= 3.4182994214976752e+04
      Term: 1[    3]= 1.8118437314273896e-05
      Term: 1[    4]= 8.0346596016909989e-04
Component for row 1 and column 0:
This component has not been set.
Component for row 1 and column 1:

  DiagMatrix "KKT[1][1]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[1][1]" with 2 elements:
    KKT[1][1][    1]= 9.2620813891948914e+04
    KKT[1][1][    2]= 1.7857352935663314e+05
Component for row 2 and column 0:

  GenTMatrix "KKT[2][0]" of dimension 1 by 4 with 4 nonzero elements:
  KKT[2][0][    1,    1]= 1.0000000000000000e+00  (0)
  KKT[2][0][    1,    2]= 1.0000000000000000e+00  (1)
  KKT[2][0][    1,    3]= 1.0000000000000000e+00  (2)
  KKT[2][0][    1,    4]= 1.0000000000000000e+00  (3)
Component for row 2 and column 1:
This component has not been set.
Component for row 2 and column 2:

  DiagMatrix "KKT[2][2]" with 1 rows and columns, and with diagonal elements:
    DenseVector "KKT[2][2]" with 1 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
Component for row 3 and column 0:

  GenTMatrix "KKT[3][0]" of dimension 2 by 4 with 8 nonzero elements:
  KKT[3][0][    2,    1]= 2.2999999999999998e+00  (0)
  KKT[3][0][    2,    2]= 5.5999999999999996e+00  (1)
  KKT[3][0][    2,    3]= 1.1100000000000000e+01  (2)
  KKT[3][0][    2,    4]= 1.3000000000000000e+00  (3)
  KKT[3][0][    1,    1]= 1.1798925182789434e+01  (4)
  KKT[3][0][    1,    2]= 1.1899998473835513e+01  (5)
  KKT[3][0][    1,    3]= 3.4556391056896160e+01  (6)
  KKT[3][0][    1,    4]= 5.2063724837208390e+01  (7)
Component for row 3 and column 1:

  IdentityMatrix "KKT[3][1]" with 2 rows and columns and the factor -1.0000000000000000e+00.
Component for row 3 and column 2:
This component has not been set.
Component for row 3 and column 3:

  DiagMatrix "KKT[3][3]" with 2 rows and columns, and with diagonal elements:
    DenseVector "KKT[3][3]" with 2 elements:
    Homogeneous vector, all elements have value -0.0000000000000000e+00
******* KKT SYSTEM *******
(0) KKT[1][1] =   1.229622047179401e-01
(1) KKT[2][1] =  -5.260857372866832e-08
(2) KKT[3][1] =  -2.496951921381094e-01
(3) KKT[4][1] =  -1.250444883791519e-03
(4) KKT[2][2] =   8.814200124050479e-02
(5) KKT[3][2] =  -1.895194736125765e-06
(6) KKT[4][2] =  -9.490917871843909e-09
(7) KKT[3][3] =   5.149270027055315e-01
(8) KKT[4][3] =  -4.504658449399609e-02
(9) KKT[4][4] =   2.873956790785689e-01
(10) KKT[1][1] =   4.299425934382945e-06
(11) KKT[2][2] =   3.418299421497675e+04
(12) KKT[3][3] =   1.811843731427390e-05
(13) KKT[4][4] =   8.034659601690999e-04
(14) KKT[5][5] =   9.262081389194891e+04
(15) KKT[6][6] =   1.785735293566331e+05
(16) KKT[7][1] =   1.000000000000000e+00
(17) KKT[7][2] =   1.000000000000000e+00
(18) KKT[7][3] =   1.000000000000000e+00
(19) KKT[7][4] =   1.000000000000000e+00
(20) KKT[7][7] =  -0.000000000000000e+00
(21) KKT[9][1] =   2.300000000000000e+00
(22) KKT[9][2] =   5.600000000000000e+00
(23) KKT[9][3] =   1.110000000000000e+01
(24) KKT[9][4] =   1.300000000000000e+00
(25) KKT[8][1] =   1.179892518278943e+01
(26) KKT[8][2] =   1.189999847383551e+01
(27) KKT[8][3] =   3.455639105689616e+01
(28) KKT[8][4] =   5.206372483720839e+01
(29) KKT[8][5] =  -1.000000000000000e+00
(30) KKT[9][6] =  -1.000000000000000e+00
(31) KKT[8][8] =  -0.000000000000000e+00
(32) KKT[9][9] =  -0.000000000000000e+00
Right hand side 0 in TSymLinearSolver:
Trhs[    0,    0] = -1.4201186547819309e-14
Trhs[    0,    1] =  8.1619269370434726e-15
Trhs[    0,    2] = -3.2860558862630216e-14
Trhs[    0,    3] =  8.9791595711474722e-15
Trhs[    0,    4] =  7.1205824710932758e-18
Trhs[    0,    5] =  8.4275543087066612e-17
Trhs[    0,    6] =  4.2351647362715017e-22
Trhs[    0,    7] = -6.7762635780344027e-21
Trhs[    0,    8] =  8.4703294725430034e-22
Solution 0 in TSymLinearSolver:
Tsol[    0,    0] = -8.2595896071160091e-19
Tsol[    0,    1] =  9.8016090958470327e-19
Tsol[    0,    2] = -3.4764856727686350e-19
Tsol[    0,    3] =  1.9387013487642178e-19
Tsol[    0,    4] =  5.3831254280682114e-21
Tsol[    0,    5] = -1.8519470343360740e-20
Tsol[    0,    6] = -1.2199841777877931e-14
Tsol[    0,    7] =  4.9146887595903041e-16
Tsol[    0,    8] = -3.3913627241164926e-15
Factorization successful.

CompoundVector "SOL[ 0]" with 4 components:

Component 1:
  DenseVector "SOL[ 0][ 0]" with 4 elements:
  SOL[ 0][ 0][    1]=-8.2595896071160091e-19
  SOL[ 0][ 0][    2]= 9.8016090958470327e-19
  SOL[ 0][ 0][    3]=-3.4764856727686350e-19
  SOL[ 0][ 0][    4]= 1.9387013487642178e-19

Component 2:
  DenseVector "SOL[ 0][ 1]" with 2 elements:
  SOL[ 0][ 1][    1]= 5.3831254280682114e-21
  SOL[ 0][ 1][    2]=-1.8519470343360740e-20

Component 3:
  DenseVector "SOL[ 0][ 2]" with 1 elements:
  SOL[ 0][ 2][    1]=-1.2199841777877931e-14

Component 4:
  DenseVector "SOL[ 0][ 3]" with 2 elements:
  SOL[ 0][ 3][    1]= 4.9146887595903041e-16
  SOL[ 0][ 3][    2]=-3.3913627241164926e-15

CompoundVector "resid" with 8 components:

Component 1:
  DenseVector "resid[ 0]" with 4 elements:
  resid[ 0][    1]= 1.7370792863613581e-21
  resid[ 0][    2]= 3.0076287072428086e-21
  resid[ 0][    3]= 3.0109374296930207e-21
  resid[ 0][    4]= 4.6652986547990761e-22

Component 2:
  DenseVector "resid[ 1]" with 2 elements:
  resid[ 1][    1]= 0.0000000000000000e+00
  resid[ 1][    2]= 0.0000000000000000e+00

Component 3:
  DenseVector "resid[ 2]" with 1 elements:
  resid[ 2][    1]= 0.0000000000000000e+00

Component 4:
  DenseVector "resid[ 3]" with 2 elements:
  resid[ 3][    1]=-1.6940658945086007e-21
  resid[ 3][    2]=-2.1175823681357508e-21

Component 5:
  DenseVector "resid[ 4]" with 4 elements:
  resid[ 4][    1]= 2.1175823681357508e-22
  resid[ 4][    2]=-1.4948381515054968e-22
  resid[ 4][    3]= 0.0000000000000000e+00
  resid[ 4][    4]= 0.0000000000000000e+00

Component 6:
  DenseVector "resid[ 5]" with 0 elements:

Component 7:
  DenseVector "resid[ 6]" with 2 elements:
  resid[ 6][    1]= 9.2406737297256883e-23
  resid[ 6][    2]= 5.1763411769919935e-23

Component 8:
  DenseVector "resid[ 7]" with 0 elements:
max-norm resid_x  3.010937e-21
max-norm resid_s  0.000000e+00
max-norm resid_c  0.000000e+00
max-norm resid_d  2.117582e-21
max-norm resid_zL 2.117582e-22
max-norm resid_zU 0.000000e+00
max-norm resid_vL 9.240674e-23
max-norm resid_vU 0.000000e+00
nrm_rhs = 2.15e-06 nrm_sol = 4.16e-05 nrm_resid = 3.01e-21
residual_ratio = 6.889410e-17
*** Step Calculated for Iteration: 7

CompoundVector "delta" with 8 components:

Component 1:
  DenseVector "delta[ 0]" with 4 elements:
  delta[ 0][    1]= 6.2652408420045599e-06
  delta[ 0][    2]=-7.1082302230748998e-06
  delta[ 0][    3]= 2.1484200753482001e-06
  delta[ 0][    4]=-1.3054306942778603e-06

Component 2:
  DenseVector "delta[ 1]" with 2 elements:
  delta[ 1][    1]=-4.4263887633871674e-06
  delta[ 1][    2]=-3.2456323788051470e-06

Component 3:
  DenseVector "delta[ 2]" with 1 elements:
  delta[ 2][    1]= 2.8767389987981127e-06

Component 4:
  DenseVector "delta[ 3]" with 2 elements:
  delta[ 3][    1]=-8.9578023627337380e-07
  delta[ 3][    2]= 2.0591086450586848e-06

Component 5:
  DenseVector "delta[ 4]" with 4 elements:
  delta[ 4][    1]=-2.7284348833183980e-06
  delta[ 4][    2]= 3.1369317704728081e-06
  delta[ 4][    3]=-5.6576557368345396e-06
  delta[ 4][    4]=-4.1552305212928097e-05

Component 6:
  DenseVector "delta[ 5]" with 0 elements:

Component 7:
  DenseVector "delta[ 6]" with 2 elements:
  delta[ 6][    1]= 8.9576181220129773e-07
  delta[ 6][    2]=-2.0591270691307609e-06

Component 8:
  DenseVector "delta[ 7]" with 0 elements:

**************************************************
*** Finding Acceptable Trial Point for Iteration 7:
**************************************************

--> Starting line search in iteration 7 <--
Mu has changed in line search - resetting watchdog counters.
Acceptable Check:
  overall_error =  2.1540498233862424e-06   acceptable_tol_             =  2.5000000000000002e-06
  dual_inf      =  3.6266234808475257e-08   acceptable_dual_inf_tol_    =  1.0000000000000000e+10
  constr_viol   =  0.0000000000000000e+00   acceptable_constr_viol_tol_ =  1.0000000000000000e-02
  compl_inf     =  2.1540498233862424e-06   acceptable_compl_inf_tol_   =  1.0000000000000000e-02
  curr_obj_val_ =  2.9894383464029904e+01   last_obj_val                =  2.9894810258333436e+01
  fabs(curr_obj_val_-last_obj_val_)/Max(1., fabs(curr_obj_val_)) =  1.4276738774220053e-05 acceptable_obj_change_tol_ =  1.0000000000000000e+20
test iter = 7
Storing current iterate as backup acceptable point.
The current filter has 0 entries.
Relative step size for delta_x = 7.108180e-06
minimal step size ALPHA_MIN = 3.479185E-12
Starting checks for alpha (primal) = 1.00e+00
Checking acceptability for trial step size alpha_primal_test= 1.000000e+00:
  New values of barrier function     =  2.9894378202211513e+01  (reference  2.9894383567756453e+01):
  New values of constraint violation =  6.9393379931170784e-12  (reference  3.7627721383159951e-08):
reference_theta = 3.762772e-08 reference_gradBarrTDelta = -5.407549e-06
Checking sufficient reduction...
Succeeded...
Checking filter acceptability...
Succeeded...
reference_theta = 3.762772e-08 reference_gradBarrTDelta = -5.407549e-06
Convergence Check:
  overall_error =  2.5601472143227907e-09   IpData().tol()   =  2.4999999999999999e-08
  dual_inf      =  6.7175978109862574e-12   dual_inf_tol_    =  1.0000000000000000e+00
  constr_viol   =  0.0000000000000000e+00   constr_viol_tol_ =  1.0000000000000000e-04
  compl_inf     =  2.5601472143227907e-09   compl_inf_tol_   =  1.0000000000000000e-04


**************************************************
*** Summary of Iteration: 8:
**************************************************

iter    objective    inf_pr   inf_du lg(mu)  ||d||  lg(rg) alpha_du alpha_pr  ls
   8  2.9894378e+01 0.00e+00 6.72e-12  -8.6 7.11e-06    -  1.00e+00 1.00e+00h  1 

**************************************************
*** Beginning Iteration 8 from the following point:
**************************************************

Current barrier parameter mu = 2.5059035596800618e-09
Current fraction-to-the-boundary parameter tau = 9.9999999749409640e-01

||curr_x||_inf   = 6.3552157588044078e-01
||curr_s||_inf   = 2.0999999796094247e+01
||curr_y_c||_inf = 1.8371240051781502e+01
||curr_y_d||_inf = 5.8035508519546641e-01
||curr_z_L||_inf = 2.4333262262711122e-01
||curr_z_U||_inf = 0.0000000000000000e+00
||curr_v_L||_inf = 5.8035508519549150e-01
||curr_v_U||_inf = 0.0000000000000000e+00

||delta_x||_inf   = 7.1082302230748998e-06
||delta_s||_inf   = 4.4263887633871674e-06
||delta_y_c||_inf = 2.8767389987981127e-06
||delta_y_d||_inf = 2.0591086450586848e-06
||delta_z_L||_inf = 4.1552305212928097e-05
||delta_z_U||_inf = 0.0000000000000000e+00
||delta_v_L||_inf = 2.0591270691307609e-06
||delta_v_U||_inf = 0.0000000000000000e+00
DenseVector "curr_x" with 4 elements:
curr_x[    1]= 6.3552157588044078e-01
curr_x[    2]= 2.0662786455638473e-10
curr_x[    3]= 3.1270187526127102e-01
curr_x[    4]= 5.1776548651660315e-02
DenseVector "curr_s" with 2 elements:
curr_s[    1]= 2.0999999796094247e+01
curr_s[    2]= 4.9999999543293958e+00
DenseVector "curr_y_c" with 1 elements:
curr_y_c[    1]=-1.8371240051781502e+01
DenseVector "curr_y_d" with 2 elements:
curr_y_d[    1]=-4.1054107970688986e-01
curr_y_d[    2]=-5.8035508519546641e-01
DenseVector "curr_slack_x_L" with 4 elements:
curr_slack_x_L[    1]= 6.3552158588044083e-01
curr_slack_x_L[    2]= 1.0206627864556385e-08
curr_slack_x_L[    3]= 3.1270188526127102e-01
curr_slack_x_L[    4]= 5.1776558651660316e-02
DenseVector "curr_slack_x_U" with 0 elements:
DenseVector "curr_z_L" with 4 elements:
curr_z_L[    1]= 3.9161679371855925e-09
curr_z_L[    2]= 2.4333262262711122e-01
curr_z_L[    3]= 7.9748433126077562e-09
curr_z_L[    4]= 4.9446067506085493e-08
DenseVector "curr_z_U" with 0 elements:
DenseVector "curr_slack_s_L" with 2 elements:
curr_slack_s_L[    1]= 6.0942468849134457e-09
curr_slack_s_L[    2]= 4.3293955087619906e-09
DenseVector "curr_slack_s_U" with 0 elements:
DenseVector "curr_v_L" with 2 elements:
curr_v_L[    1]= 4.1054107970691495e-01
curr_v_L[    2]= 5.8035508519549150e-01
DenseVector "curr_v_U" with 0 elements:
DenseVector "curr_grad_lag_x" with 4 elements:
curr_grad_lag_x[    1]=-1.3972073785324917e-12
curr_grad_lag_x[    2]= 2.9985736116344697e-12
curr_grad_lag_x[    3]=-6.7175978109862574e-12
curr_grad_lag_x[    4]= 2.2499346068421792e-12
DenseVector "curr_grad_lag_s" with 2 elements:
curr_grad_lag_s[    1]=-2.5091040356528538e-14
curr_grad_lag_s[    2]=-2.5091040356528538e-14

CompoundVector "delta" with 8 components:

Component 1:
  DenseVector "delta[ 0]" with 4 elements:
  delta[ 0][    1]= 6.2652408420045599e-06
  delta[ 0][    2]=-7.1082302230748998e-06
  delta[ 0][    3]= 2.1484200753482001e-06
  delta[ 0][    4]=-1.3054306942778603e-06

Component 2:
  DenseVector "delta[ 1]" with 2 elements:
  delta[ 1][    1]=-4.4263887633871674e-06
  delta[ 1][    2]=-3.2456323788051470e-06

Component 3:
  DenseVector "delta[ 2]" with 1 elements:
  delta[ 2][    1]= 2.8767389987981127e-06

Component 4:
  DenseVector "delta[ 3]" with 2 elements:
  delta[ 3][    1]=-8.9578023627337380e-07
  delta[ 3][    2]= 2.0591086450586848e-06

Component 5:
  DenseVector "delta[ 4]" with 4 elements:
  delta[ 4][    1]=-2.7284348833183980e-06
  delta[ 4][    2]= 3.1369317704728081e-06
  delta[ 4][    3]=-5.6576557368345396e-06
  delta[ 4][    4]=-4.1552305212928097e-05

Component 6:
  DenseVector "delta[ 5]" with 0 elements:

Component 7:
  DenseVector "delta[ 6]" with 2 elements:
  delta[ 6][    1]= 8.9576181220129773e-07
  delta[ 6][    2]=-2.0591270691307609e-06

Component 8:
  DenseVector "delta[ 7]" with 0 elements:


***Current NLP Values for Iteration 8:

                                   (scaled)                 (unscaled)
Objective...............:   2.9894378048973934e+01    2.9894378048973934e+01
Dual infeasibility......:   6.7175978109862574e-12    6.7175978109862574e-12
Constraint violation....:   0.0000000000000000e+00    0.0000000000000000e+00
Complementarity.........:   2.5601472143227907e-09    2.5601472143227907e-09
Overall NLP error.......:   2.5601472143227907e-09    2.5601472143227907e-09

DenseVector "grad_f" with 4 elements:
grad_f[    1]= 2.4550000000000001e+01
grad_f[    2]= 2.6750000000000000e+01
grad_f[    3]= 3.9000000000000000e+01
grad_f[    4]= 4.0500000000000000e+01
DenseVector "curr_c" with 1 elements:
curr_c[    1]= 0.0000000000000000e+00
DenseVector "curr_d" with 2 elements:
curr_d[    1]= 2.0999999796087309e+01
curr_d[    2]= 4.9999999543293967e+00
DenseVector "curr_d - curr_s" with 2 elements:
curr_d - curr_s[    1]=-6.9384498146973783e-12
curr_d - curr_s[    2]= 8.8817841970012523e-16

GenTMatrix "jac_c" of dimension 1 by 4 with 4 nonzero elements:
jac_c[    1,    1]= 1.0000000000000000e+00  (0)
jac_c[    1,    2]= 1.0000000000000000e+00  (1)
jac_c[    1,    3]= 1.0000000000000000e+00  (2)
jac_c[    1,    4]= 1.0000000000000000e+00  (3)

GenTMatrix "jac_d" of dimension 2 by 4 with 8 nonzero elements:
jac_d[    2,    1]= 2.2999999999999998e+00  (0)
jac_d[    2,    2]= 5.5999999999999996e+00  (1)
jac_d[    2,    3]= 1.1100000000000000e+01  (2)
jac_d[    2,    4]= 1.3000000000000000e+00  (3)
jac_d[    1,    1]= 1.1798924608988067e+01  (4)
jac_d[    1,    2]= 1.1899999999955638e+01  (5)
jac_d[    1,    3]= 3.4556392029537029e+01  (6)
jac_d[    1,    4]= 5.2063726005876163e+01  (7)

SymTMatrix "W" of dimension 4 with 10 nonzero elements:
W[    1,    1]= 1.2296220471794006e-01  (0)
W[    2,    1]=-5.2608573728668323e-08  (1)
W[    3,    1]=-2.4969519213810940e-01  (2)
W[    4,    1]=-1.2504448837915190e-03  (3)
W[    2,    2]= 8.8142001240504794e-02  (4)
W[    3,    2]=-1.8951947361257652e-06  (5)
W[    4,    2]=-9.4909178718439092e-09  (6)
W[    3,    3]= 5.1492700270553149e-01  (7)
W[    4,    3]=-4.5046584493996095e-02  (8)
W[    4,    4]= 2.8739567907856889e-01  (9)



Number of Iterations....: 8

                                   (scaled)                 (unscaled)
Objective...............:   2.9894378048973934e+01    2.9894378048973934e+01
Dual infeasibility......:   6.7175978109862574e-12    6.7175978109862574e-12
Constraint violation....:   0.0000000000000000e+00    0.0000000000000000e+00
Complementarity.........:   2.5601472143227907e-09    2.5601472143227907e-09
Overall NLP error.......:   2.5601472143227907e-09    2.5601472143227907e-09

DenseVector "x" with 4 elements:
x[    1]= 6.3552157588044078e-01
x[    2]= 2.0662786455638473e-10
x[    3]= 3.1270187526127102e-01
x[    4]= 5.1776548651660315e-02
DenseVector "y_c" with 1 elements:
y_c[    1]=-1.8371240051781502e+01
DenseVector "y_d" with 2 elements:
y_d[    1]=-4.1054107970688986e-01
y_d[    2]=-5.8035508519546641e-01
DenseVector "z_L" with 4 elements:
z_L[    1]= 3.9161679371855925e-09
z_L[    2]= 2.4333262262711122e-01
z_L[    3]= 7.9748433126077562e-09
z_L[    4]= 4.9446067506085493e-08
DenseVector "z_U" with 0 elements:
DenseVector "v_L" with 2 elements:
v_L[    1]= 4.1054107970691495e-01
v_L[    2]= 5.8035508519549150e-01
DenseVector "v_U" with 0 elements:

Number of objective function evaluations             = 9
Number of objective gradient evaluations             = 9
Number of equality constraint evaluations            = 9
Number of inequality constraint evaluations          = 9
Number of equality constraint Jacobian evaluations   = 9
Number of inequality constraint Jacobian evaluations = 9
Number of Lagrangian Hessian evaluations             = 8
Total CPU secs in IPOPT (w/o function evaluations)   =      0.018
Total CPU secs in NLP function evaluations           =      0.000

EXIT: Optimal Solution Found.
DenseVector "final x unscaled" with 4 elements:
final x unscaled[    1]= 6.3552157588044078e-01
final x unscaled[    2]= 2.0662786455638473e-10
final x unscaled[    3]= 3.1270187526127102e-01
final x unscaled[    4]= 5.1776548651660315e-02
DenseVector "final y_c unscaled" with 1 elements:
final y_c unscaled[    1]=-1.8371240051781502e+01
DenseVector "final y_d unscaled" with 2 elements:
final y_d unscaled[    1]=-4.1054107970688986e-01
final y_d unscaled[    2]=-5.8035508519546641e-01
DenseVector "final z_L unscaled" with 4 elements:
final z_L unscaled[    1]= 3.9161679371855925e-09
final z_L unscaled[    2]= 2.4333262262711122e-01
final z_L unscaled[    3]= 7.9748433126077562e-09
final z_L unscaled[    4]= 4.9446067506085493e-08
DenseVector "final z_U unscaled" with 0 elements: