NAG Library Manual, Mark 30
Interfaces:  FL   CL   CPP   AD 

NAG CL Interface Introduction
Example description

nag_opt_handle_solve_ipopt (e04stc) Example Program Results

Variables
     x(         1)                 =        6.36E-01
     x(         2)                 =        2.07E-10
     x(         3)                 =        3.13E-01
     x(         4)                 =        5.18E-02
Variable bound Lagrange multipliers
    zL(         1)                 =        3.92E-09
    zU(         1)                 =        0.00E+00
    zL(         2)                 =        2.43E-01
    zU(         2)                 =        0.00E+00
    zL(         3)                 =        7.97E-09
    zU(         3)                 =        0.00E+00
    zL(         4)                 =        4.94E-08
    zU(         4)                 =        0.00E+00
Linear constraints Lagrange multipliers
    zL(         1)                 =        5.80E-01
    zU(         1)                 =        0.00E+00
    zL(         2)                 =        1.84E+01
    zU(         2)                 =        0.00E+00
Nonlinear constraints Lagrange multipliers
    zL(         1)                 =        4.11E-01
    zU(         1)                 =        0.00E+00
Stationarity test for Lagrange multipliers
    lx(         1)                 =       -1.40E-12     Ok
    lx(         2)                 =        3.00E-12     Ok
    lx(         3)                 =       -6.71E-12     Ok
    lx(         4)                 =        2.25E-12     Ok

At solution, Objective minimum     =      2.9894E+01
             Constraint violation  =        0.00E+00
             Dual infeasibility    =        6.72E-12
             Complementarity       =        2.56E-09
             KKT error             =        2.56E-09
    after iterations                        :          8
    after objective evaluations             :          9
    after objective gradient evaluations    :          9
    after constraint evaluations            :          9
    after constraint gradient evaluations   :          9
    after hessian evaluations               :          8