Program g08chfe
! G08CHF Example Program Text
! Mark 30.3 Release. nAG Copyright 2024.
! .. Use Statements ..
Use nag_library, Only: g05kff, g05sff, g08chf, nag_wp
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Integer, Parameter :: genid = 1, lseed = 1, mstate = 17, &
nin = 5, nout = 6, subid = -1
! .. Local Scalars ..
Real (Kind=nag_wp) :: a2, aa2, beta, nupper, p, sa2, sbeta
Integer :: i, ifail, j, k, lstate, n, nsim, &
n_pseudo
Logical :: issort
! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: x(:), xsim(:), y(:)
Integer :: seed(lseed), state(17)
! .. Intrinsic Procedures ..
Intrinsic :: exp, real, sum
! .. Executable Statements ..
Write (nout,*) 'G08CHF Example Program Results'
Write (nout,*)
! Skip heading in data file
Read (nin,*)
! Read number of observations
Read (nin,*) n
! Memory allocation
Allocate (x(n),y(n))
! Read observations
Read (nin,*)(x(i),i=1,n)
! Maximum likelihood estimate of mean
beta = sum(x(1:n))/real(n,kind=nag_wp)
! PIT, using exponential CDF with mean beta
Do i = 1, n
y(i) = 1.0E0_nag_wp - exp(-x(i)/beta)
End Do
! Let g08chf sort the (approximately) uniform variates
issort = .False.
! Calculate A-squared
ifail = 0
a2 = g08chf(n,issort,y,ifail)
aa2 = (1.0E0_nag_wp+0.6E0_nag_wp/real(n,kind=nag_wp))*a2
! Number of simulations
nsim = 888
! Generate exponential variates using a repeatable seed
Allocate (xsim(n*nsim))
seed(1) = 206033
lstate = mstate
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)
n_pseudo = n*nsim
ifail = 0
Call g05sff(n_pseudo,beta,state,xsim,ifail)
! Simulations loop
nupper = 0.0E0_nag_wp
Do j = 1, nsim
k = (j-1)*n
! Maximum likelihood estimate of mean
sbeta = sum(xsim(k+1:k+n))/real(n,kind=nag_wp)
! PIT
Do i = 1, n
y(i) = 1.0E0_nag_wp - exp(-xsim(k+i)/sbeta)
End Do
! Calculate A-squared
ifail = 0
sa2 = g08chf(n,issort,y,ifail)
If (sa2>aa2) Then
nupper = nupper + 1.0E0_nag_wp
End If
End Do
! Simulated upper tail probability value
p = nupper/real(nsim+1,kind=nag_wp)
! Results
Write (nout,'(1X,A,E11.4)') &
'H0: data from exponential distribution with mean', beta
Write (nout,'(1X,A,1X,F8.4)') 'Test statistic, A-squared: ', a2
Write (nout,'(1X,A,1X,F8.4)') 'Upper tail probability: ', p
End Program g08chfe